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This dissertation investigates the principles of multisensory integration that underlie the per-

ception of ownership over one’s body. To that end, three experimental approaches have been

utilized: 1) an investigation of the rubber hand illusion from the perspective of Bayesian

causal inference operating in peripersonal space has indicated that this phenomenon is gov-

erned by the same principles of statistical inference that govern perception of external ob-

jects, 2) an investigation of the same model formulated to operate in the somatotopic space

– that which lines the surface of the body – revealed that the integration of visual and

tactile representations is again governed by the same process of causal inference, and 3) an

investigation of the malleability of the somatotopic space has revealed that brief exposure to

synchronous visual-tactile pairs at different locations can cause a recalibration of that space.
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In combination, these three investigations have made use of the Bayesian causal inference

model that has been implemented in different ways, in order to model the respective spaces

of relevance. Seeking to synthesize a complete account of body ownership, I then proceed

to propose a unified account that makes use of the principles of Bayesian causal inference

and performs a combined computation that operates in both somatotopic and peripersonal

spaces in performing the inference as to which object is my body.
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EPIGRAPH

The foot feels the foot

when it feels the ground.

—Buddha
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Chapter 1

Background and Introduction

The unity of consciousness is the most immediate fact confronting us, all our experiences

being staged coherently on a common stage, seamlessly woven together as a single piece of

fabric is from many individual threads. While obvious and immediate it nevertheless remains

a great mystery, especially as regards the circuitry of the brain that achieves this unification,

despite the large strides we have taken in recent years to shed light on this and related

questions. A subset of our perceptual world – arguably the most fundamental – is that

which represents our own physical bodies and identifies with them as such. This forms the

foundation of the sense of self-consciousness and serves as the nexus about which the rest of

perceptual reality turns. It substantializes that ephemeral feeling of being a self and anchors

all expressions of subjective experience in bodily phenomenology. Therefore, it would seem

that the elucidation of the conditions that engender the appearance of this faculty, as well

as those that result in its deviations from the norm, would be of pressing scientific concern.

This field of study situates itself within the broader realm of multisensory perception.

When a ventriloquist’s speech is perceived as emanating from the puppet’s mouth – an
1



erroneous, though entertaining, percept – the perceptual system shifts its estimate of the

location of the auditory source towards the visual signal because this is the inference that

is most consistent with the totality of sensory data. In other words, the moving lips of

the puppet are inferred to be more likely to have caused the sound than the ventriloquist’s

motionless lips. The scientific study of these phenomena concerns itself with observing

the requirements for the occurrence of such illusions, such as proximity in spacetime or

congruence along one of many possible dimensions of comparison.

The rubber hand illusion (RHI) is very well suited for use in the study of body representa-

tion because it is robust and easy to induce, as well as being so stark and vivid an experience

that it often evokes in the naïve observer hysterical fits of laughter at the absurdity of what

is perceived. In brief, the illusion involves positioning a lifelike model of a hand on a table

in front of the subject, in a plausible location and posture congruent to that of the hidden

real hand, and then applying synchronized brushstrokes to both. The sensory information

impinging on the brain is then processed and the resultant inference can be approximated

figuratively as: the time-locked brushstrokes are most likely to have originated in the same

event, namely the stroking of a single hand, which is therefore the visible fake hand, which

must therefore be my hand. This offers a unique window of insight into the mechanisms

of multisensory integration that underlie the fundamental way we perceive ourselves. Re-

cently, researchers have even started to propose computational models that can capture the

observed behavior of human subjects in multisensory experimental tasks. While there is still

considerable debate as to the correct family of mathematical frameworks, researchers are

making good progress in identifying and comparing from amongst models that are achieving

progressively better fits to collected data.
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What follows is a body of work aimed at the characterization of the processes of multi-

sensory integration that underlie several related aspects of body representation. I will begin

with an investigation of the computational underpinnings of the rubber hand illusion (RHI)

and attempt to explain it by recourse to a Bayesian causal inference model (Chapter 2). As

the RHI involves a trimodal process operating in both space and time, I will need to simplify

the paradigm to be able to study the phenomenon more systematically. To that end, I will

restrict myself to the study of the malleability of visual and tactile spatial representations

along the surface of the body in order to arrive at a more quantitative characterization of

the Bayesian model (Chapter 3), and then proceed to examine whether these representa-

tions undergo recalibration following repeated presentations of synchronous though spatially

discrepant stimuli (Chapter 4). At the end, this will comprise a body of work that eluci-

dates the mathematical principles underlying the multisensory interactions the figure into

the dynamic spatiotemporal representation of one’s own body.

1.1 Multisensory Integration

Before we begin our specific discussion of the mechanisms that underlie body represen-

tation, it would be helpful to give a brief survey of the major findings from the literature on

multisensory interactions. In general, the dominant impetus motivating the study of multi-

sensory interactions derives from a concern regarding the question of how it is that parallel

streams of information entering, or being processed by, the brain ever get combined and

integrated into a coherent whole, a problem known as “the binding problem” (Revonsuo,

1999).
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Robert Welch and David Warren (1980) laid the foundations for the principled behavioral

investigation of what they called “intersensory bias”, namely the behavioral effect of combin-

ing two discrepant signals leading to an estimate that is slightly different from one or both.

They examined several competing theories to account for the effect, some of which are in fact

still under debate at present, such as: (1) the modality appropriateness hypothesis, which

posits that information from a modality that the nervous system deems most appropriate to

the task at hand is overweighted regardless of the noise in the signal, and (2) the modality

precision hypothesis, which states just the opposite, that signals are weighted entirely as a

function of the amount of noise corrupting them. After conducting a thorough and exhaus-

tive review of the literature at the time, they synthesized an account that occupies a sort

of middle ground between these alternatives, bringing them both to bear on the inference

process, and also suggests an additional factor, what they called the “unity assumption”

that represents the subject’s predisposition to regard the situation as representing a single

or multiple event(s) (Welch and Warren, 1980). As we shall see in subsequent sections, this

was exactly the insight that paved the way for the Bayesian causal inference models with

which I will be most concerned.

As mentioned earlier, this field of study aims at uncovering the spatial, temporal, and

other factors that influence whether or not stimuli are to be integrated or segregated. The

seminal electrophysiological studies in this regard come from the heroic efforts of Meredith

and Stein (1986) who recorded from the superior colliculus of the live anesthetized cat as it

was presented with spatially coincident stimuli that were either unisensory or multisensory

and observed a striking superadditivity of the response in the multisensory case (Meredith

and Stein, 1986). Avillac et al. (2007) extended this work to the monkey ventral intraparietal
4



cortex and reported broadly analogous findings in terms of the nonlinearity of the combined

neuronal responses. A seminal Nature Neuroscience review article emerged in 2008 that

set out the principles that had been discovered from all the work that had been done all

the way from single-unit recordings up to neuroimaging in humans. In brief, the authors

summarized that for multisensory integration to occur, the stimuli must be coincident in

space and time, these principles being known as the spatial rule and the temporal rule,

respectively (Stein and Stanford, 2008). Additionally, another principle was expounded,

namely the law of inverse effectiveness, which states that multisensory facilitation is greatest

when the individual signals are least effective.

The field rapidly progressed to the study of these phenomena as they occur in human

perception when experimenters began to study the famous old trick known as ventriloquism,

which we will begin to discuss in more detail in the next section.

Spatial Factors

Ventriloquism, the process by which auditory signals are perceived to emanate from differ-

ent spatial source than they do in reality, relies on multisensory interactions that engender

this interplay between the auditory and visual spaces. Several researchers have begun to

elucidate many of the conditions required to elicit this strange phenomenon. Specifically, a

spatial disparity between crossmodal stimuli may be overcome and the stimuli bound if and

only if there is at least one other dimension along which the stimuli correspond (Hairston

et al., 2003). Additionally, further research has demonstrated that this illusory effect is

critically dependent on the perception of the unity of the signals, which the authors as-
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sayed explicitly, and moreover that a contrasting repulsive effect occurs when such unity is

not perceived (Wallace et al., 2004). Research has shown that this effect can be successfully

modeled as a near-optimal computation involving maximum likelihood estimation on sources

with signals being weighted by their reliabilities, a quantity that is equal to the inverse of

their variance (Alais and Burr, 2004).

Researchers have naturally attempted to extend these paradigms to other combinations

of modalities, and an audiotactile ventriloquist illusion was subsequently discovered wherein

the tactile modality “captures” the auditory estimate of position along azimuth (Caclin

et al., 2002; Bruns et al., 2011; Renzi et al., 2013). In the pioneering study that discovered

this, Charles Spence’s group demonstrated that auditory spatial localization judgments in

external space along azimuth could be biased by vibrotactile stimulation of the index fingers

when the arms were outstretched (Caclin et al., 2002). An extension of this work revealed

that the direction of biasing reversed upon crossing the arms, indicating that the illusion was

in fact operating in external, and not body-related or anatomical, spatial coordinates (Bruns

et al., 2011). To the best of my knowledge, no study has yet examined similar ventriloquist-

like spatial biasing along the surface of the body, which was therefore a question I myself set

out to investigate, and will discuss in far greater detail in the chapters to follow (see Chapter

3).

Temporal Factors

While vision is a very reliable modality with regards to spatial estimates, given that it has

a spatially coded topography in the cortex and that its principle input is spatial in nature,

6



it does not have comparably good resolution for temporal information. Therefore, when

experimental arrangements are produced so as to provide dual channels to similar information

that is highly temporally constituted, the auditory modality will dominate, in keeping with

the modality appropriateness hypothesis, and the visual modality will recalibrate. The prime

example of just such a setup is what is known as the sound-induced flash illusion and its

variants.

The sound-induced flash illusion, discovered in 2000 by researchers at the California In-

stitute of Technology, is a well known instance of auditory dominance over a visual judgment

(Shams et al., 2000). The paradigm is simple enough to implement: flashes and beeps are

presented in various stimulus configurations and the subject is asked to judge the number of

flashes that were seen. When the number of beeps exceeds the number of flashes, subjects’

visual numerosity judgments are either dictated entirely by, or biased towards, the number of

beeps. In an extension of this work, the authors also found that the temporal window of in-

tegration, i.e. the maximum stimulus onset asynchrony that permits the illusory experience

was ∼ 100ms, which was consistent with previous single cell recordings (Shams et al., 2002).

This finding is in keeping with the modality appropriateness hypothesis insofar as the audi-

tory modality is a much more reliable channel of information in the temporal domain than

the visual modality. However, this effect only seems to occur when the beeps are more in

number than the flashes, and this asymmetry has thus far resisted satisfactory explanation.

Finally, a more recent study has even revealed that feedback training with repeat exposures

to the illusion does nothing to restore veridical perceptions, and therefore that the illusion

is robust to decision factors and high-level cognitive biases (Rosenthal et al., 2009).

Subsequent to the discovery of the sound-induced flash illusion came its extension to other
7



modality pairings, specifically what came to be known as the touch-induced flash illusion. In

this version of the illusory experience the biasing of the numerosity judgment is occasioned

by the greater temporal acuity of the somatosensory modality in comparison with that of the

visual modality (Violentyev et al., 2005). Finally, an experiment was conducted where all

three modalities were used in a parametrically manipulated design that was used to support

the notion that human perception follows optimal statistical inference using a computational

model of such that will be discussed in more detail below (Wozny et al., 2008).

Recalibration

One of the interesting consequences of multisensory interactions is their tendency to

engender an effect known as “recalibration”. This occurs when a perceptual map shifts its

alignment with perceptual maps from other modalities whenever misaligned information gets

integrated. This can occur in either spatially or temporally encoded mappings, and these

will be discussed in what follows.

Spatial Recalibration

The ventriloquist aftereffect is a phenomenon observed subsequent to exposure to spa-

tially disparate audiovisual stimuli, as in the cases of ventriloquism discussed above, where

auditory localization judgments are shifted in the direction of the visual stimulus. The first

psychophysical report of this effect comes from Gregg Recanzone’s paper for a PNAS collo-

quium in 1998 in which he claimed to have found evidence that 20-30 minutes of exposure to

8◦ disparate audiovisual stimuli was sufficient to produce an enduring shift in the auditory

representations (Recanzone, 1998). Noteworthy is that the temporal synchrony of the audio-
8



visual stimuli was a necessary condition for the occurrence of the aftereffect, as indeed it was

seen to be for the occurrence of the ventriloquist illusion itself. This is interesting in that

it indicates that the stimuli must correspond on some dimension for their successful binding

to overcome a lack of correspondence on another dimension. In an extensive replication of

this initial finding, Lewald sought to broaden its validity and examine it in greater detail.

Apart from a verification of the finding as well as its extension to a larger set of spatial

disparities and auditory tone frequencies, Lewald also found evidence that the aftereffect is

specific to the frequency of presented tones and did not transfer to other frequencies (Lewald,

2002). Interestingly, a subsequent study found robust generalization across frequencies in

stark contrast to these initial findings, with implications regarding the central or peripheral

neural underpinnings of this recalibration (Frissen et al., 2003). Finally, and building on the

findings of Wallace et al. (2004) that observed a dependence of the illusion on the perceived

unity of the signals, this effect was explained using a Bayesian causal inference model that

will be discussed in detail in later sections of this work wherein the auditory representa-

tions are encoded as Gaussian distributions with means shifted in the direction of visual

representations (Wozny and Shams, 2011a).

Spatial recalibration need not be restricted to audiovisual remappings, and in fact has

been investigated with respect to visuo-proprioceptive recalibration. Insofar as this has

relevance to the interactions that figure into the generation of the body representation,

these studies merit careful investigation. Using either prisms (Baily, 1972; Held and Hein,

1958) or psychophysical stimulus presentation techniques (Bedford, 1989), these studies have

shown unequivocally that the visuo-proprioceptive maps that inform reach movements do

indeed recalibrate upon extended exposure to conflicted pairings, and that this adaptation
9



is enhanced when movements in the new mapping are made, but that the adaptation does

not generalize to the overall body representation and is limited to the limb and/or posture

that has been adapted.

Temporal Recalibration

We have been discussing the intriguing effect that occurs when spatially encoded maps

shift their alignment with respect to each other to overcome a spatial disparity. However,

a corresponding effect for temporally encoded information has been recently found that is

of equal import, though it has received less attention in the literature. Specifically, Fujisaki

and colleagues reported in 2004 that subjects exposed to audiovisual stimuli with a con-

stant lag between them exhibited a commensurately shifted point of subjective simultaneity

(PSS), which, however, was only roughly 10% of the total lag that they were exposed to

(Fujisaki et al., 2004). Importantly, this initial study could not disentangle which modal-

ity was specifically being recalibrated as the judgments were inherently crossmodal, being

judgements regarding the simultaneity of crossmodal stimuli. A similar study from the same

year reported broadly consistent findings, with the exception that the reported maximal

exposure lag that produced the recalibration was ∼ 100ms whereas in the former it was

larger: ∼ 235ms (Vroomen et al., 2004). It is important to note that congruence in the non-

shifted dimension is essential for the realization of this effect, as it was in the case of spatial

recalibration. In other words, the stimuli must be spatially coincident if their temporal

non-coincidence is to drive recalibration.

A similarly intentioned study was conducted to examine whether such an effect occurs

in audiotactile integration. It was observed that although there was indeed an aftereffect of

10



asynchronous presentation, this was not in terms of a shift in PSS but rather a widening of

the just noticeable difference (JND), which the authors explain as being potentially due to

the lack of lifelong exposure to the asynchronies in this modality pairing in contrast to the

situation with audiovisual integration, which lead to an increase in the temporal window of

integration (Navarra et al., 2007).

Higher Order Multisensory Integration

Thus far we have been discussing the integration of information from low-level spatial and

temporal maps, such as flashes and beeps. However, similar forms of multisensory integration

have also been observed with higher level percepts, such as speech sounds and ownership over

body parts. Two notable examples of this form of multisensory integration will be used for

illustration: the McGurk effect whereby phonemes are distorted due to mismatched visual

and auditory stimuli, and the rubber hand illusion whereby hand ownership judgment is

distorted by mismatched visual and somatosensory stimuli.

The McGurk effect was first reported in 1976 in a Nature brief report detailing how

mismatched audio (/ba/) and visual phonemes (/ga/) are combined to produce a percept

of intermediate phonetic identity (/da/). This effect is explained as arising from the life-

long experience with both modalities of speech perception and thereafter the expectation of

matching phonemic identity, which leads to a perceptual averaging effect as is observed in

simpler audiovisual integration paradigms (Mcgurk and Macdonald, 1976). Further, atten-

tion seems to play a crucial role in this perceptual averaging, shown by a recent dual-task

study that had subjects perform a concurrent auditory or visual task that depleted at-
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tentional resources and observed that subjects’ perception of the McGurk phonemes was

severely suppressed under such conditions, implying that it is not as automatic and early as

was initially suspected (Alsius et al., 2005).

Another perceptual illusion that seems to depend on higher-level as well as spatiotemporal

factors is the rubber hand illusion, first reported by Botvinick and Cohen in a Nature brief

communication in 1998. Briefly, the authors described the induction of the illusion as being

dependent on placing a lifelike model of the hand in a position congruent to the arm, deviated

only in the azimuth dimension and with the real hand occluded from vision by a barrier, and

the application of synchronized brushstrokes to both hidden real hand and visible rubber

hand (Botvinick and Cohen, 1998). This produces the illusory feeling of ownership over the

rubber hand, involving a remapping of visuoproprioceptive space similar to what occurs in

ventriloquism with audiovisual maps. This seems to show that the perception of our own

bodies relies on the same principles of multisensory integration that were thought to operate

only at lower levels. Subsequent studies have revealed that this illusion is even accompanied

by a physiological anxiety response when the owned rubber hand is threatened (Armel and

Ramachandran, 2003).

Body Representation

Before disembarking from the station of multisensory interactions, we shall discuss one

last topic that has vexed cognitive researchers for decades, with recent work suggesting it may

prove amenable to the same techniques that have been utilized for the study of multisensory

interactions. I am referring to the study of the body representation, not to be confused with
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the somatomotor homunculi that straddle the central sulcus, but rather the more integrated

sense of inhabiting a physical, corporeal object that one feels both a sense of agency over,

as well as presence within (see Herrera et al. (2006) for a discussion of the notions of agency

and presence).

Body Schema and Body Image

In the early twentieth century, researchers sought out to propose a conceptual classifica-

tion scheme for the various kinds of body representations, seeming as they did to dissociate

under certain circumstances and to serve sometimes dramatically different purposes. There

are several such classification schemes, but by far the most influential is that which splits the

body representations into a so-called “body image” and a “body schema”, the former being

the representation that is more visual (the way the body looks like from the outside) and the

latter being that which is more sensorimotor (the way the body feels from the inside). This

division is along broadly analogous lines to the more general action/perception dichotomy in

mental representations in general. The clinical cases where this proposed taxonomy reveals

its merits are deafferentation and numbsense. In the former, patients are stripped of their

abilities to use body representations to guide actions, and as such are deficient in their body

schemas. In numbsense, patients are no longer able to identify which part of their bodies has

been touched, but can still make accurate movements, and are therefore impaired in their

body image (de Vignemont, 2010; Head and Holmes, 1911).
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Embodied Cognition

In recent years, there has been a growing interest in using Embodied Cognition as a

framework for understanding many – or, depending on who you ask, all – cognitive processes

in the brain. This framework claims that the body and its needs and peculiarities are of

fundamental importance in shaping our cognitive processes. One example of the type of

process that is described here is the acquisition of action verb concepts, which are proposed

to be derived from a mental simulation of the actual motor output that would be performed

in said action verb. This theory remains controversial and does not enjoy universal support,

though some of its claims are well verified, such as that “cognition is for action” by the

established “where” stream in visual perception (Wilson, 2002).

Peripersonal Space

While we are in the process of conducting this brief survey of the multisensory interactions

that figure into the body representation, we will give an introductory treatment of the

notion of peripersonal space, which has become so central to all discussions of the body

representation of late. This topic will be further discussed at length in Section 1.5 below.

Peripersonal space refers to the idea that there exists a privileged region surrounding

the body wherein information processing is prioritized, and which is the functional area

within which the body is capable of defending itself and acting upon the world. This is

a relatively new notion that has emerged with the findings from the initial studies that

discovered bimodal neurons in monkey parietal and frontal cortices, which respond to visual

and tactile stimulation, and whose visual receptive fields (RFs) extend out into space adjacent
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to the tactile RFs (Rizzolatti et al., 1997). Moreover, these visual RFs are anchored to

the tactile RFs, meaning that they are very rapidly and dynamically remapping to remain

associated with their preferred part of the body, even as the body and/or the eyes move freely.

Even more intriguingly, Graziano has observed that these neurons will spontaneously remap

onto a visible dummy hand if the real hand is hidden and will have visual RFs that will remain

anchored thereto (Graziano et al., 2000). In addition, tool use has been shown to be able to

extend the peripersonal space, which has therefore been hypothesized to be a functional map

of the body, demarcating the boundary within which it is possible to act upon the world

(Ladavas, 2002). Avillac et al.’s study (2007), mentioned above in Section 1.1, recorded

from neurons in monkey area VIP and also found evidence for these bimodal neurons in the

parietal lobe, showing that they integrated visual and tactile targets in a similar fashion

to those recorded by Graziano (Avillac et al., 2007). Taken together, these findings lend

credence to the possibility of visuotactile interactions that resemble ventriloquism as the

neurophysiology of these neurons concords with the audiovisual neurons Meredith and Stein

recorded from in the superior colliculus, albeit operating in a different spatial reference frame

– body-centered peripersonal space as opposed to external audiovisual space.

Body Matrix

While many theories exist regarding the importance of, and delineating various functions

of, the body representations, we shall not have to survey them all, the preceding discussions

having given us a good deal of the flavor of the rest. However, it would be quite remiss of this

survey if it did not include the modern approach to theorizing about body representations

as being a result of multisensory integrative processes, with a stronger thrust to including
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homeostatic mechanisms in the analysis, as well as interoceptive systems and their relation-

ship to emotional processing. Lorimer Moseley and colleagues (2012) defined a theoretical

construct that they called the “body matrix”, which was purported to capture the notion of

peripersonal space and explain it as arising out multisensory interactions involving propri-

oception, vision, and touch, and which is coded in body-centered coordinates. Moreover, it

is said to include homeostatic regulatory functions and to coordinate between this and the

cognitive representations of the body, thereby contrasting quite dramatically from the old

body image/schema dichotomy (Moseley et al., 2012).

The Importance of Interoception

Related to the foregoing discussion, is the proliferation of theories of awareness that

implicate the body representations as being of fundamental import. The most popular of

these is Bud Craig’s theory of the “sentient self”, claiming that the anterior insula contains

a re-representation of the interoceptive sensations from the internal milieu upon which is

overlaid to-be-integrated information arriving from many other brain areas. In this way, he

claims that this representation provides the basis for the subjective feeling of what he calls

the “global emotional moment”, and that if this were to be modular, would account for the

so-called stream of consciousness in its trajectory through serial repetitions of the module

(Craig, 2010). A very related account has been proposed by another group of researchers and

differs only its specification of the processes computed in the insula as being interoceptive

inference, and the further elaboration on the arising of the separate subjective notions of

agency and presence (Seth et al., 2012).
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1.2 Rubber Hand Illusion

Having thus surveyed the prominent experimental paradigms of multisensory interac-

tions, we can extend our foray into the intersection of this field with that concerning the

representation of one’s own body. The primary tool for the study of this phenomenon is the

rubber hand illusion. For perception scientists, illusory experiences represent great assets in

unveiling the mechanisms of normative experience insofar as they function like microelec-

trodes that can patch clamp onto a phenomenology and record traces of its modulation by

a variety of experimental conditions.

Initial findings

Botvinick and Cohen reported two measures of the illusion: drift in the proprioceptively

localized position of the hidden arm in the direction of the seen rubber hand, as well as

positive scores on questionnaires that directly assess the degree of the feeling of ownership

over the rubber hand (Botvinick and Cohen, 1998). Subsequent to this, as mentioned above,

Armel and Ramachandran discovered that the illusion was accompanied by a physiologi-

cal response measured by increases in skin conductance in response to threatening stimuli

directed at the rubber hand, but only when it was owned and not otherwise (Armel and

Ramachandran, 2003). Moseley and colleagues reported in 2008 that the skin temperature

of the stimulated hidden hand dropped significantly upon self-attribution of the rubber hand

as compared to the unstimulated hand, a surprising finding suggesting a disownership of the

real hand as a result of the illusion, though we have heard anecdotal reports that this par-

ticular finding is difficult to replicate (Moseley et al., 2008). Another study examining the
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influence of anatomical and postural factors on the illusion, showed that the rubber hand

must be in a position that is both anatomically plausible and congruent with the real hand’s

posture in order for the illusion to occur (Tsakiris and Haggard, 2005). The illusion has

been also reported to be sensitive to spatial mismatches in hand-centered space, whether

these mismatches occurred in tactile stimulation vectors or in hand position (Costantini and

Haggard, 2007). Finally, a study that addressed the question of the spatial limits of the RHI

observed that the illusory reports dropped off significantly after a distance 27.5cm intervened

between the real and rubber hands, and was at a minimal level after that, indicating a spatial

zone with a non-linear boundary surrounding the body where objects to-be-embodied are

preferentially processed, in support of the peripersonal space hypothesis (Lloyd, 2007).

Neuroimaging and Stimulation

By now there have been several neuroimaging studies of the rubber hand illusion that

have reported broadly concordant findings. The first of these reported that the ventral

premotor cortex shows activity in fMRI scans that correlates with the experience of the

illusion, as well as revealing a network of regions involving the intraparietal sulcus and

cerebellum that are involved in the recalibration period leading up to the illusion (Ehrsson

et al., 2004). A subsequent study by the same group found similarly that the ventral premotor

cortex was bilaterally involved, and moreover expanded upon these studies by indicating the

involvement of the insula and anterior cingulate cortices in the generation of the anxiety

response to threat of the hand, modulated by the extent of ownership (Ehrsson et al., 2005).

Additionally, Tsakiris et al. (2007) conducted a PET study that manipulated the synchrony
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Figure 1.1: Makin et al. (2008)’s peripersonal space model of the RHI

of visuotactile stimulation of a rubber hand and showed that activity in the right posterior

insula was correlated with proprioceptive drift and, moreover, that failure to illicit the illusion

was associated with activity in somatosensory cortices. An EEG study examining the effects

of synchronous visuotactile stimulation on somatosensory ERPs was conducted and found

an enhanced N140 in this condition compared to one where visuotactile stimulation was

uncorrelated (Press et al., 2008). Finally, a recent exhaustive fMRI study of the neuronal

correlations of body-related multisensory integration and disintegration across the visual,

tactile, and proprioceptive modalities confirmed the previous findings that a network of

areas is responsible for the integration that occurs, namely a network spanning premotor

cortices, intraparietal cortices, and cerebellar regions (Gentile et al., 2013).
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Cognitive Models

With regard to the underlying framework accounting for the illusion specifically, and body

representation more generally, several qualitative neurocognitive models have been proposed.

The first of these emerged from a sweeping and thorough review of the literature and can be

outlined as follows (see Figure 1.1): a mechanism of peripersonal space remapping that de-

pends upon an initial visuo-proprioceptive integration step is purported to occur somewhere

in the posterior parietal cortex, followed by a referral of all visual stimuli occurring near the

dummy hand to the dummy-centered coordinates thereby computed and the eventual feeling

of ownership over the dummy hand that this produces, purported to occur in the premotor

areas (Makin et al., 2008).

A subsequently proposed model built upon Makin et al.’s by including a role for top-down

constraints on objects to be embodied (see Figure 1.2) – proposed to be occurring in the

temporoparietal junction – and proposing that the recalibration of visual and tactile maps

occurs in posterior parietal and ventral premotor cortices, as in Makin et al., and finally

that the right posterior insula is the seat of the subjective experience of ownership (Tsakiris,

2010). From a slightly different approach, Graziano and Botvinick (2002) wrote a review

that attempted to bridge the often disparate neuropsychological and psychological concep-

tualizations of the body representation, many of the themes of which have been discussed

in Section 1.1 above. They propose a model that is very similar to the peripersonal space

model described above, in that it describes the body representation as being composed of

the integration of low-level joint position information with crossmodal information about

the body and a top-down representation of the body, namely the the body schema, resulting
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Figure 1.2: Tsakiris (2010)’s neurocognitive model of body ownership

in a coherent zone surrounding and representing the feeling of inhabiting the body. On a

related note, Macaluso and Maravita (2010) presented a sweeping survey of the literature

and emphasized the dynamic nature of the body representation, looking at specific examples

of how tool use remaps peripersonal space, and how dummy hands very rapidly remap the

visual-tactile correspondences.

Recent findings

More recently there has been a flurry of interest in the continued study of the illusion

and many fascinating and often conflicting reports have emerged from this latter wave of

research. One such study from 2009 revealed the temporal binding window for the multi-

sensory integration that underlies the RHI (Shimada et al., 2009). The authors used video
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techniques to introduce various levels of visual feedback delay and assess the effect that

this had on ownership ratings and proprioceptive drift, and reported that 300ms was the

largest delay that permitted the illusion, and that longer delays caused significant reduc-

tion in both measures. Holle et al. (2011) showed two years later that it was possible to

dissociate proprioceptive drifts from ownership reports, a surprising finding that cast doubt

on previous studies that assumed these to always be assaying the same underlying neural

process. Specifically, the researchers rotated the rubber hand by 180◦ and found signifi-

cant proprioceptive drift when stroking was synchronous, but no ownership reports. A very

important study was conducted in 2012 to assess whether the susceptibility to the RHI –

a very poorly understood aspect of the illusion – is a trait-like or a state-like variable by

studying its long-term stability (Bekrater-Bodmann et al., 2012). This study found firstly

that the subjective ratings were stronger when the illusion was induced in a vertical setup

as compared to a horizontal one (i.e. when the spatial disparity between the real and rub-

ber hands was vertical instead of azimuthal), and that these were correlated across two

sessions conducted six months apart. In addition, activity in the ventral premotor cortex

was correlated with the subjective strength of the illusion and across-sessions. However, the

proprioceptive drift was not correlated across sessions, suggesting yet again that this may

not be the ideal behavioral proxy of the RHI. One more piece of evidence supporting the

dissociation of these two measures comes from another study from 2012 that attempted to

induce supernumerary limb rubber hand illusions – i.e. using two rubber hands – and found

that while the subjective feeling of ownership was present for both dummy limbs when they

were stroked in synchrony with the real hand, proprioceptive drift was abolished by this

highly non-ecological experimental setup (Folegatti et al., 2012).
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Another interesting recent study demonstrated that RHI induction on the left hand

reduces the pseudoneglect that is observed in non-pathological individuals when asked to

bisect a straight line (Ocklenburg et al., 2012). Finally, a very recent paper reported the

interesting effect that merely expecting a tactile event to occur on a rubber hand that is

positioned appropriately is enough to induce an illusion as indexed by skin conductance

responses, and that merely looking at a rubber hand does not suffice, but that a stimulus

must fall within peripersonal space, remapped or not (Ferri et al., 2013). In a concerning

conflict of results, I (see Chapter 2) have recently obtained evidence for precisely this latter

effect, namely that the RHI can occur in the absence of vision (Samad et al., 2015).

Motor-Induced Variant

Since the first demonstration of the RHI, researchers have examined variants of it to

attempt to shed light on its generalizability. One notable variant is that which utilizes

synchronized actions made by the subject rather than passive touches. Briefly, this makes

use of visual-kinesthetic congruence to induce multisensory integration as opposed to visual-

tactile congruence. The first such experiment revealed that active movements resulted in

proprioceptive drifts that encompassed the entire hand despite the movement being restricted

to one finger, whereas when the movements were passive or tactile stimulation was instead

applied to a single finger, the proprioceptive drift thereby produced was fragmentary and

restricted to the stimulated finger (Tsakiris et al., 2006). A later study showed that subjective

reports of ownership were as high in this motor-induced variant as in the more conventional

condition (Dummer et al., 2009). Subsequent investigations using the motor-induced RHI

23



variant found a dissociation between the feeling of agency and ownership over the rubber

hand by manipulating whether the movements were active or passive (Kalckert and Ehrsson,

2012), and that synchronized motor actions produced both of the typical RHI measures

(ownership reports and proprioceptive drift) and that these were correlated (Sanchez-Vives

et al., 2010).

Self-Touch Variant

Apart from the motor-induced variant described above, there is also an interesting variant

that relies on only touch and proprioception. The discovery of this variant reported that when

subjects made experimenter-guided taps to a hidden rubber hand that were synchronized

with another (visible) experimenter’s taps to the subject’s visible hand, subjects perceived the

visible experimenter’s hand as their own and that they were touching their own hand, indexed

by questionnaires and proprioceptive drifts (Davies et al., 2010). In addition, Ehrsson et al.

(2005) discovered yet another variant that does not seem to require vision at all. There,

blindfolded subjects administer experimenter-guided touches to a rubber hand in synchrony

with experimental touches to their contralateral hand, resulting in an illusory experience

akin to the RHI, but where it seems the two signals to be bound are both proprioceptive

in nature, one being kinesthetic from the active hand and the other passive from the static

hand (Ehrsson et al., 2005).
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Other findings

As of this writing there have been over 100 published articles that examined various

aspects of the rubber hand illusion. Of these, many are of only tangential interest to my

express aims, but it will do us no harm to briefly mention some notable findings. First, it

was reported that the RHI experience correlates with empathic and schizotypy questionnaire

items (Asai et al., 2011). Intriguingly, a paper from 2011 reported that heartbeat count-

ing accuracy – an established interoceptive sensitivity task – was negatively correlated with

RHI susceptibility, suggesting that interoceptive awareness plays an important role in the

integration of body-related signals (Tsakiris et al., 2011). Following on this, a recent paper

demonstrated for the first time that it is possible to induce the illusion using synchronized

visual feedback of heartbeats flashing over the dummy hand, with no tactile stimulation

required (Suzuki et al., 2013). These latter two results support the theories of conscious

selfhood by interoceptive predictive coding described above. Another notable finding relates

to the oft-cited dissociation between action and perception subsystems and posits a corre-

sponding dissociation in body representations, supported by experiments that showed that

ballistic reaches towards their hands were accurate despite having experienced the illusion

and exhibiting the expected proprioceptive drift when assessed using perceptual judgments

(Kammers et al., 2009). Other curious findings relate to the fact that skin tone and texture

have no effect on the induction of the illusion (Haans et al., 2008). Another very influential

study investigated the possibility of using a psychometric approach to further specify and

obtain greater insight into the questionnaire that is conventionally utilized, and observed

that the subjective experience can be grouped into three major subcomponents: ownership,

25



location, and agency (Longo et al., 2008).

The Mirror Illusion

Finally, I would like to briefly mention the large literature that has emerged around the

so-called mirror illusion. This refers to an experimental paradigm that is closely related

to the rubber hand illusion and is very well suited for the study of visuo-proprioceptive

integration. The method consists of positioning a mirror such that it reflects the image of

the subject’s hand so as to appear to vary in location with respect to the real hand which is

hidden behind the mirror. The effects of this visuo-proprioceptive disparity on subsequent

reaches is often measured and is taken to be analogous to proprioceptive drift in the rubber

hand illusion (Holmes and Spence, 2005; Holmes et al., 2004). Recently, these paradigms

have been used to test van Beers et al. (1998, 2002) direction-dependent reliability model

by causing visuo-proprioceptive discrepancies either in a horizontal plane (Snijders et al.,

2007) or in a parasagittal plane (Tajima et al., 2015), and have found evidence that the

visuo-proprioceptive integration occurs when the reflected object is a hand, and that this

depends on a spatial window that is consistent with the predictions of the model.

1.3 Full-body Generalizations of the Rubber Hand Il-

lusion

Now we shall shift gear and give a brief survey of a few interesting experimental attempts

to study the general representation of the entire body, by what would at first appear to be
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two slightly different though related generalizations of the rubber hand illusion.

Full-Body Illusion

In 2007, two rival groups in Europe simultaneously discovered a novel type of illusion

named the full body illusion (FBI), which can be thought of as a generalization of the rubber

hand illusion, though by different means of its induction, which can cause a significantly

different type of illusion to be perceived. I consider the Ehrsson (2007) variant to be more

faithful to the original RHI paradigm and more naturally adapted to the whole body, though

this is by no means uncontroversial. In short, this illusion makes use of stereo cameras placed

behind a seated subject that are connected to a head-mounted display that the subject is

wearing, which gives them a view of themselves from behind. The experimenter then supplies

synchronized taps to the subject’s chest and the corresponding location under the cameras

(see Figure 1.3), analogous to the synchronized brushstrokes in the RHI. This illusion was

measured using ownership questionnaires and skin conductance responses to threats applied

to the camera between conditions where the stroking was synchronous compared to when it

was asynchronous (Ehrsson, 2007). The Lenggenhager et al. (2007) variant of this illusion

was discovered nearly simultaneously in France and was similar in most respects except

that it utilized a different stroking strategy, applying taps to subjects’ back which rendered

them visible in the camera’s field of view, and which could be synchronous (no-delay) or

asynchronous (video delay). In this illusion, the authors utilized questionnaires as well

as an adaptation of the proprioceptive localization measure to the full body case wherein

subjects were passively moved while standing and blindfolded, and then asked to return
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Figure 1.3: Henrik Ehrsson administering the taps that induce the full-body illusion

to their location of origin, and found that their estimates were more biased towards the

perceived body when the stroking was synchronous (Lenggenhager et al., 2007). I favor

the former variant because it is more similar to the RHI in its requirement of binding a

visionless tactile signal with a touchless visual signal. The latter, in contrast, involves the

same signal containing visual and tactile aspects, both of which are brought into conflict with

an egocentric spatial representation, and as such seems to investigate a different question

than that posed by the RHI and Ehrsson’s FBI.

Body Swapping and The Barbie Effect

In an extension of this work, Petkova and Ehrsson (2008) showed that it was possi-

ble for subjects to feel as though they had switched bodies with the experimenter. They
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achieved this startling effect by having the cameras affixed to the experimenter’s head and

aimed at a metronome-synchronized handshake with the subject, who thereby perceived this

from the experimenter’s point of view. The validity of the subjective phenomenology was

demonstrated by galvanic skin responses recorded from the subject being higher when the

experimenter’s wrist was threatened compared to when the subject’s hand was (Petkova and

Ehrsson, 2008).

Several experiments were conducted by the Ehrsson group at the Karolinska Institute

designed to assess the effect that body transfer illusions of the type described above have

on the perceived size of objects and the world. Among these, subjects experienced a full

body illusion in which ownership over a miniature doll’s body or a giant’s body was induced

via similar mechanisms to those previously discussed. When the body they transferred into

was tiny, they reported that objects were smaller and farther away, and vice versa for the

giant body, these effects being reported across ten experiments that utilized a variety of test

measures from questionnaire items, to physiological measures, to verbal distance estimation.

This surprising finding is interpreted within the embodied cognition framework and taken

to be indicative of a general process whereby the body that one inhabits is a foundation for

the perception of all of the space that surrounds it (van der Hoort et al., 2011).

Peripersonal Space and Cardiac-Induced FBI

The Lenggenhager et al. (2007) method for inducing the FBI has been utilized to assess

the extent of peripersonal space, and in an intriguing study that investigated this using mod-

ulations of tactile detection reaction times by looming or receding auditory stimuli found that
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the these boundaries correspondingly shift forward when subjects experience their bodies at

the location shown in front of them (Noel et al., 2015).

Finally, one last noteworthy study involved the use of interoceptive signals to induce a

full body illusion. This is analogous to the cardiac-induced RHI discussed above in Section

1.2. In this case, the authors recorded subjects’ heartbeats and displayed these as halos

overlaid on the image of their bodies seen from behind that flashed either in real time or

with a video delay introduced, and observed the induction of the Lenggenhager et al. (2007)

variant of the full body illusion measured by shifts in the self-location metric and greater

cross-modal congruency effects (Aspell et al., 2013).

Effect of other modalities in virtual worlds

The preceding set of experiments discussed naturally leads on to the consideration of

the sorts of effects one expects to obtain in studies that utilize a completely artificial en-

vironment, what is called virtual reality, as opposed to the merely altered reality of the

experiments surveyed above. To this end, a recent study examined the extent to which mul-

tisensory stimulation in virtual reality strengthens the feeling of presence by manipulating

the multisensory cues that were available (auditory, tactile, and olfactory) as well as the level

of visual fidelity in a massively factorial design (2x2x2x2) with 322 subjects. The measure of

presence was quantified by four sets of questionnaires assessing presence, spatial layout, and

object location. The study found main effects for the addition of cues from all non-visual

modalities in terms of increasing presence, but surprisingly visual fidelity showed no effect

(Dinh et al., 1999). In addition, research from Joseph O’Doherty’s and Miguel Nikolelis’s
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groups has been hard at work at improving the ability of brain-computer interfaces to pro-

vide sensory feedback to monkeys through stimulating somatosensory cortex using implanted

electrodes, and have had some recent success in providing virtual tactile and proprioceptive

stimuli that enabled the monkey to successfully interact with virtual objects (Dadarlat et al.,

2015; O’Doherty et al., 2011).

1.4 Proprioception

At this point, we should take pause to investigate one of the lesser understood modali-

ties of the brain, and in particular discuss its framing in the context of sensory-perceptual

functions. Proprioception has traditionally been studied in the context of motor control,

despite its being inherently sensory in nature that nevertheless serves its highest function in

the feedback loops that modulate motor output and correct erroneous trajectories. However,

its role in passive body location judgments has been somewhat understudied, although there

are several seminal studies that do report such experimental investigations. If the goal is to

understand the body representations that the brain constructs, however, the elucidation of

proprioceptive function would appear to have an important place in a body of work such as

what is being presented here.

Localization Accuracy and Precision

The classic series of studies that investigated the crucial question of how proprioception

and vision are integrated in the formation of a visuoproprioceptive estimate was performed

by Robert van Beers and colleagues. In the first of these, a paradigm was designed where
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subjects localized targets that were either visual or proprioceptive (location of fingertip

under experimental tabletop) or both, and then used statistical models to disentangle the

contributions of the two modalities, in terms of the variances of their individual probability

distributions. They found that proprioception was more precise in the radial direction with

respect to the shoulder and that vision was more precise in the azimuthal direction, and

moreover account for this finding by referring to the geometry of the arm and the noise in

joint angle estimates (van Beers et al., 1998). The very next year, Beers et al. (1999) proposed

a model for the integration of the information from the two modalities based on these results,

and then performed a study to test it. They found that the integrative step performs

direction-dependent estimations based on the directionally-weighted modality, and that the

estimate therefore lies off the straight line connecting the (biased) unisensory estimates.

Finally, in a subsequent study, van Beers et al. (2002) obtained further confirmation of this

model from an adaptation paradigm where a displacement in the visual stimuli was gradually

introduced and its effects on localization error assessed, and found a double dissociation

between blocks where the displacement was in azimuth and those where it was in depth.

These findings further supported their model, thus providing convergent evidence for it across

a series of experiments and approaches, strengthening the case for both the directionally-

specific precisions and the integration scheme.

Drift in absence of vision

A discordant finding that generated vigorous debate in the literature concerns the nature

of unisensory proprioceptive representations in the absence of visual input. Several early
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studies reported that the proprioceptive estimate drifts towards the body midline, and that

this drift develops gradually the longer that the limb has been occluded from vision, and

furthermore is stronger if the limb has been passively positioned (Paillard and Brouchon,

1968). However, this result has been contested by other research that appeared to show that

proprioception does not in fact drift in the absence of vision across several experiments that

manipulated whether the initial hand position or its trajectory during reaches was visible

(Desmurget et al., 2000). Finally, one intriguing idea was put to the test by a research

study in 2003 that examined the hypothesis that it was movement speed that generated the

drifting estimates and verified that this was indeed the case and not a fading of proprioceptive

representations, namely that faster movements incurred greater amounts of drift than slower

movements (Brown et al., 2003). Recently, however, a group of researchers working under

Eli Brenner have proposed a model for the optimal combination of visual and proprioceptive

information that can account for these drifts in a manner that depends on the number

of reaches that have been performed without vision, and not necessarily the duration of

occlusion (Smeets et al., 2006). There is, thus, clearly a need for more research in order to

ascertain more clearly the cause for these unisensory biases and the nature of the relationship

to movement.

Imaging

An fMRI study was performed in 2007 to investigate the cortical contributions to vi-

suoproprioceptive integration and revealed that the posterior intraparietal sulcus was the

ultimate destination for the processing of information regarding a visual stimulus near the
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proprioceptively felt hand (Makin et al., 2007).

1.5 Visual-Tactile Interactions

In contrast to the difficulties in research on proprioception, the other half of the so-

matosensory field of representations has received considerably more attention and elucida-

tion, namely the tactile modality. This modality offers several advantages over its proprio-

ceptive cousin. First, the primary somatosensory cortex is principally a somatotopic map of

the surface of the body, and as such occupies the lowest rung in the hierarchy of somatosen-

sory processing. This is advantageous because it enables a relatively pure investigation into

somatosensory processes, so that its interaction with other modalities can be cleanly inves-

tigated. Secondly, it is far easier to create and manipulate tactile stimuli as compared to

proprioceptive stimuli, which necessarily imply movement of the body part involved and thus

make systematic studies laborious and inherently limited (e.g. it is difficult if not impossible

to create a unimodal condition lacking proprioceptive information).

Bimodal Neurons

Let us begin with a survey of the single-cell recording experiments that investigated

neurons with both visual and tactile receptive fields. We must of course begin with the

series of studies by Michael Graziano that report results of recording from a variety of

sensorimotor areas in the macaque brain (Graziano and Botvinick, 2002; Graziano et al.,

2000; Graziano and Gross, 1998). Across these studies, the central underlying finding is that

there exists a network of brain regions, principally ventral premotor cortex, that contain
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Figure 1.4: A. Figure reproduced from Graziano et al. (1994) showing the anchoring of the
visual RF to the hand. B and C. Figure reproduced from Graziano et al. (2000) showing
the response of bimodal neurons to visual stimulation near a fake arm.

so-called bimodal neurons responsive to both visual and tactile stimuli, with the curious

property that visual receptive fields of these neurons are said to be anchored to the tactile

receptive fields (see Figure 1.4A) (Graziano et al., 1994; Graziano and Botvinick, 2002).

In addition, what is intriguing about these neurons is that they respond to the position of

a realistic fake monkey arm when their real arm is hidden but with a congruent posture

implicating the role of visuo-proprioceptive integration (see Figure 1.4B-C) (Graziano et al.,

2000), and that eye movements do not alter their body-centered visual receptive field coding

that remain anchored to the relevant part of the body (Graziano and Gross, 1998).
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Neuropsychological Findings

Complementary to the neurophysiological evidence discussed in the previous section are

clinical observations from patients with right hemispheric damage that results in the clinical

condition known as extinction (Ladavas, 2002). In particular, an effect that has been named

cross-modal visuotactile extinction, a visual stimulus in the right hemifield and near the right

hand (i.e., on the same side of the body as the lesion) inhibits the processing of a tactile

stimulus on the left hand (i.e., on the opposite side of the lesion, and thus, the impaired side),

and that this extinguishing effect was as strong as was obtained by using a tactile stimulus

on the right hand (Ladavas et al., 1998). What is most interesting about these findings,

however, is the fact that this extinguishing effect relied on the visual stimulus being near

the body, and was greatly attenuated by its positioning in far space (Ladavas et al., 1998).

This result concords quite nicely with the single-cell recording studies that similarly observe

a boundary surrounding the body beyond which no, or very weak, visuotactile interactions

can be observed (Graziano et al., 1994).

Behavioral Findings

Finally, it would be remiss of this review if it did not briefly remark upon the various find-

ings involving visuotactile interactions from behavioral paradigms. A very well established

effect is what is commonly referred to as the visual enhancement of touch effect (VET),

first discovered by Patrick Haggard’s research group at UCL in 2001 (Kennett et al., 2001),

which itself built off of earlier findings that reported a speeding effect of vision of the hand

on tactile detection rates (Tipper et al., 1998). They observed that merely looking at one’s
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hand improved tactile two-point discrimination even though the visual stimulus contained

only task-irrelevant information (Kennett et al., 2001). Subsequently, this effect has been

further investigated using different methodologies, and found an visual modulation of tactile

ERPs (Taylor-Clarke et al., 2002), and that it exhibits the characteristic inverse effectiveness

that is typical of multisensory facilitation and moreover is stronger when the hand is per-

ceived to belong to oneself (Longo et al., 2008). Another notable visuotactile interaction was

reviewed in an article by Spence et al. (2004) and is referred to as the crossmodal congruency

effect. Briefly, it entails a speed advantage for elevation discrimination responses regarding

vibrotactile pulses to the index finger or thumb – while subjects grasped a cube embedded

with tactors and LEDs – crucially, when the light distractors were congruent with the tactile

stimuli (Spence et al., 2004). Finally, one last effect worthy of note is what is known as

the cutaneous rabbit illusion, and occurs when trains of taps at discrete locations along the

forearm are perceived as consecutively marching along the arm in a semi-continuous fashion,

and feel like a rabbit’s footsteps – hence the name (Geldard and Sherrick, 1972).

Taken together, these findings imply the existence of a tight coupling between tactile

stimuli on the surface of the body and visual stimuli that are nearby. Evidence comes from

single channel recordings – reviewed above in Section 1.1 – all the way up the heirarchy

to behavioral effects and together serves to motivate the further investigation of the condi-

tions that enable stimuli from these two modalities to be integrated. Graziano and Cooke

(2006) have attempted to synthesize a coherent account of the function of this tightly cou-

pled network of brain regions in the parietal and frontal lobes, and have speculated on its

importance for defensive behaviors that seek to protect the body. Their overarching thesis is

that peripersonal space ought to be understood under the larger framework of an ethological
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understanding of the function of this network, such that the behavior of defending the body

surface is the underlying evolutionary force driving its development.

1.6 Computational Modeling

In the last section of this survey, I will discuss briefly the computational modeling of

human perception and behavior as it relates to the topic of current study. To operate at David

Marr’s “computational level” is crucial for the understanding the information processing

task that the brain is attempting to perform (Marr, 1982). As brain processes typically

require very large circuits of neuronal assemblies that are thus very difficult to model using

neurobiological simulations, this approach has multifaceted advantages. We therefore, for the

time being, rely on normative statistical inference models that explain how signals embedded

in noise can be extracted and processed by a system that operates upon the same information

that brains are sensitive to.

Maximum Likelihood Estimation (MLE)

Michael Landy and colleagues provided a nice summary of the sorts of models of multi-

sensory integration that were available towards the end of the twentieth century and offered

their views as to the correct family of models that should be further investigated. They de-

lineated the spectrum of possible models into those which they termed Weak Observer (also

called Weak Fusion) models, wherein the cues to the system are completely modular and get

combined in a simple fashion, and those they termed Strong Observer (also called Strong

Fusion) models, where the inference proceeds on all the data simultaneously and maximizes
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the log likelihood of the data given the model, along the lines of Bayesian inference systems.

They propose to strike a middle ground between these two camps and offer a theory they

call Modified Weak Fusion, which would nowadays be better known as Maximum Likeli-

hood Estimation (MLE), where the various coexisting cues do indeed get combined, as in

Weak Fusion, but not without the intermediary step of their being weighted according to

the inverse of their variances, a quantity known as a signal’s reliability (Landy et al., 1995),

as:

x̂ =
Σi

xi

σ2
i

Σi
1
σ2

i

(1.1)

This style of thinking about the mathematization of inferential brain processes has proven

to be extremely influential in the intervening years, and is now a hallmark of initial basic

attempts to model behavioral data. Let us cursorily begin to take stock of what has been

achieved in this regard.

I should remark in passing at this point that this class of models is the ultimate realization

in mathematical form of the “modality precision” hypothesis described by Welch and Warren

in their seminal paper from 1980, and that while it has its merits, it does not fully formalize

the complete theory of “intersensory bias” that they championed (Welch and Warren, 1980).

We shall have more to say on this topic when we examine the Bayesian family of models in

what follows.

Visual and Haptic Integration

I will restrict this review to the types of models that are implemented when combining

cues across modalities, which is the topic of specific relevance to my research, and gloss over

the vast literature on cue combination within the same modality as it is not qualitatively
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different from our current purview. The key thought behind this form of modeling is that

subjects will rely more heavily on the more reliable modality. Experimenters often sys-

tematically introduce noise to the unisensory estimates and fit each subject’s psychometric

function in order to determine the just noticeable difference (JND) that can then be used to

determine relative weightings when a multisensory estimate is produced. This has been done

using a setup that allows the manipulation of haptic and visual estimates of the height of a

virtual object and results across several experiments concurred with MLE model predictions

(Ernst and Banks, 2002; Gepshtein et al., 2005).

Visual and Proprioceptive Integration

The MLE approach is a very general one, and as such, can be applied to any combination

of modalities. Of perhaps more relevance to this body of work is integration that involves

the proprioceptive modality. Relating to this, two papers reported attempting to model

arm trajectory perception using this framework and were successful at doing so (Reuschel

et al., 2010; Serwe et al., 2009). However, where Reuschel et al. (2010) found the expected

reduction in the bisensory estimate variance due to the benefit of integration, Serwe et al.

(2009) did not. The reasons for this are likely to do with the different nature of the task

that subjects performed, which in the latter paper involved stimulus pairs that would not

be likely to be integrated due to their being of a highly artificial nature.

Visual and Vestibular Integration

Another area of relevance is that concerning the integration of exteroceptive information

with vestibular information. One study of note found a statistically optimal model that could
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predict the reduction in variance in a heading discrimination task with visual and vestibular

signals, initially using a pure MLEmodel. However, the vestibular signal was always weighted

higher than the visual in cases of conflict, regardless of the reliability differences, which they

address by introducing a prior on the vestibular signal to overweight it, in essence making

the model a true Bayesian one, which will be discussed further below (Butler et al., 2010).

Bayes Decision Theory

In building upon the reliability-weighted cue combination schemes described above, Bayesian

models make a minor but important modification by introducing a prior term that incorpo-

rates the influence of past experience. In fact, the MLE models are special cases of Bayes

Decision Theory in which the prior is a uniform distribution. By way of introduction, let us

revisit a quote from the father of visual psychophysiology, the great Hermann von Holmholtz:

“The general rule according to which visual representations determine themselves
is that we always find present in the visual field such objects as would have to
exist in order for them to produce the same impression on the neural apparatus
under the usual normal conditions of the use of our eyes” – Helmholtz (1867).

In his notion of “unconscious inference”, we can see the germ of what modern investigators

formalize as Bayesian inference, namely the fact that perception is an active process that

represents the observer’s best guess as to the cause of the sensations that are registered on

the sense organs. The transition from the MLE approach to the fully characterized Bayesian

theory is broadly analogous to Welch andWarren’s discussion of how the “modality precision”

theory can be expanded upon to become the theory that they termed “intersensory bias”,

a key component of which states that past knowledge is brought to bear on the current

inference to be made (Welch and Warren, 1980).
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This influence of past knowledge, what is termed the prior, can be readily seen in the

most basic form of Bayes Rule, shown below:

p(H|e) = p(e|H)p(H)
p(e) (1.2)

where H denotes a hypothesis under consideration, and e the evidence that has been gath-

ered. The influence of prior knowledge is introduced in the term p(H), which denotes how

likely a given hypothesis is believed to be prior to gathering any evidence – hence the name.

A Brief Survey of Bayesian Models

Without spending too much time on the discussions of Bayesian models in general –

models which are by now very well established and utilized across many disciplines – I

would like to introduce and comment upon the way in which they have been formulated as

models of perception, and primarily vision. This will hopefully put the subsequent section

that deals with the Bayesian model of multisensory integration in its appropriate context.

For instance, in the seminal Nature Neuroscience paper by Weiss et al., they formulated

and tested a normative Bayesian model of motion perception that was equipped with a

prior that assumes that motion is generally slow, and found that it was able to reproduce

typically observed human biases and motion illusions (Weiss et al., 2002). From another

area of computational vision modeling, Mamassian and Landy have characterized models

based on Bayes Decision theory aimed at accounting for the constraints utilized in inferring

shape from shading (Mamassian and Landy, 2001), and shape-from-contour (Mamassian

and Landy, 1998). These highly sophisticated models demonstrate how the nervous system

combines cues from different parts of the visual system, and moreover how biases are treated
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as additional cues that serve to constrain the interpretations of a scene, of which there are

clearly infinite when the problem is as ill-posed as that of perceiving the three-dimensional

world from sensing a two-dimensional retinal image (Mamassian and Landy, 2001). Finally,

a highly influential model has been gaining a lot of traction in the field in recent years

and is called the free energy hypothesis (Feldman and Friston, 2010). At every moment in

time, the brain is claimed to be actively predicting sensory events, which represents what is

typically referred to as top-down processing, while the sensory information is simultaneously

being compared to these predictions, and hence generating a prediction error that flows up

the hierarchy, which is referred to as bottom-up processing (Feldman and Friston, 2010).

In Karl Friston’s proposal, the claim is that the brain attempts to minimize a free energy

quantity, which denotes the Bayesian surprise brought about by the prediction error, through

a process of modifying the internal model of the world (Feldman and Friston, 2010).

Bayesian Causal Inference

Of particular interest to my proposed program is the form of Bayesian modeling that

implements what is called causal inference. Briefly, this mathematical framework performs

a hierarchy of inferences, the first of which infers the most likely causal structure, and the

second of which uses that causal structure to estimate properties of the stimuli. As there

are two levels of inference, there are thus two levels of prior as well: one which corresponds

to the expected causal structure that is often referred to as pcommon or p(C = 1), and

another which corresponds to the properties to be estimated. This model has been used

quite successfully to account for a wide variety of multisensory phenomena as it can very
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parsimoniously determine when to integrate signals and when to segregate them (Kording

et al., 2007; Beierholm et al., 2009b; Wozny et al., 2010; Wozny and Shams, 2011a; Samad

et al., 2015).

Spatial information

A remarkable series of papers has established the role of the Bayesian causal inference

as the appropriate statistical framework to use as a model of the processes involved in

audiovisual localization, and as it is a general model, spatial integration by generalization.

Briefly, the model performs a hierarchical pair of inferences, the first establishing the weight

on causal structure for the signals (i.e., whether they came from the same or different sources),

and the second performing inference on the optimal location for each of the signals, with the

degree of integration or segregation of the signals determined by the causal structure deemed

most probable (Beierholm et al., 2009b; Kording et al., 2007; Wozny et al., 2010; Wozny and

Shams, 2011a).

Temporal information

Being a general and normative model, this has been adapted to the temporal domain and

has been successfully utilized to model the flash-beep illusion, which depends on numerosity

judgments (Wozny et al., 2008).

Recalibration

Finally, the same Bayesian model has been utilized to account for the recalibration which

takes place when spatially discrepant stimuli are presented to a subject for an extended period
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of time (Wozny and Shams, 2011a). With these three pieces together, the Bayesian model

seems very well suited to model the RHI, and by extension body perception in general. How-

ever, to do so it requires its extension to both spatial and temporal domains simultaneously,

and as such becomes a significantly larger model than these previous versions. In Chapter

2, I will describe in detail my attempts to investigate its behavior and predictions as well as

its success at accounting for the illusion and various other empirical effects associated with

it (Samad et al., 2015). In Chapter 3, I will present data showing the applicability of the

model to visual-tactile integration along the surface of the skin in somatotopic coordinates

(Samad and Shams, 2016).

1.7 Aims of the Dissertation

As the burgeoning field that studies the cognitive and perceptual aspects of body repre-

sentation has been surveyed in the foregoing conversation, we will now proceed to document

the experimental work that I have undertaken in the effort to contribute to this field and

address the areas in which it is lacking. We have discussed the use of perceptual illusions

such as the rubber hand illusion and the full body illusion as well as the use of computa-

tional modeling frameworks to model multisensory interactions. As the emphasis in body

representations has begun to swing in favor of regarding them as the result of such compu-

tations, it appears that the next step would be to continue investigating the multisensory

principles that govern the generation of the body representations and to attempt to discover

the computational frameworks that can best instantiate these processes.

In Chapter 2, I will describe an experiment that was conducted with the aim of fur-
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thering our understanding of the computational mechanisms that underlie the rubber hand

illusion. I applied the Bayesian causal inference model to the phenomenon and tested and

confirmed some of its predictions, lending it much credibility as the framework for explain-

ing the illusion. In Chapter 3, I will describe an experiment that aimed at uncovering a

new multisensory interaction that has never been observed before, namely visuotactile ven-

triloquism. Briefly, this involves the use of visual and tactile stimuli along the surface of

the arm, where tactile localization estimates are shifted towards simultaneously presented

nearby visual stimuli. This work also made use of the Bayesian causal inference model to

quantitatively account for the reported visuotactile ventriloquist effect, such that it produced

parameter estimates to fit the observed data. In Chapter 4, I extend the investigation into

this visuotactile interaction to a study of how prolonged exposure to spatially discrepant

stimulus pairs can induce a visuotactile recalibration, akin to the audiovisual ventriloquist

aftereffect. These experimental sections will be tied together in Chapter 5 that will synthesize

a novel theoretical and computational account I have called the Bayesian body hypothesis

from the body of work contained in between the covers of this dissertation, as a generaliza-

tion of the causal inference model to the case of body-related representations. Finally, the

appendix documents the development of a new tool I have created to aid future researchers

with the use of the Bayesian causal inference model that I have devoted much of the research

described in this dissertation to.

Thus, the overarching aims of the dissertation are to propose and test out a computa-

tional model of body ownership that can be utilized to account for body ownership illusions,

which require characterization of the peripersonal space, as well as illusions of the tactile

modality with representations characterized by their somatotopic space. The predominant
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hypothesis that spans all the work depicted here is that the computations that engender

body ownership are no different from those that are involved in perception of objects in the

external world, and therefore that a normative model based on fundamental principles of

statistical inference ought to be well-supported by the data.
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Chapter 2

Perception of Body Ownership is

Driven by Bayesian Sensory Inference

2.1 Abstract

Recent studies have shown that human perception of body ownership is highly malleable.

A well-known example is the rubber hand illusion (RHI) wherein ownership over a dummy

hand is experienced, and is generally believed to require synchronized stroking of real and

dummy hands. Our goal was to elucidate the computational principles governing this phe-

nomenon. We adopted the Bayesian causal inference model of multisensory perception and

applied it to visual, proprioceptive, and tactile stimuli. The model reproduced the RHI,

predicted that it can occur without tactile stimulation, and that synchronous stroking would

enhance it. Various measures of ownership across two experiments confirmed the predic-

tions: a large percentage of individuals experienced the illusion in the absence of any tactile

stimulation, and synchronous stroking strengthened the illusion. Altogether, these findings
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suggest that perception of body ownership is governed by Bayesian causal inference – i.e.,

the same rule that appears to govern the perception of outside world.

2.2 Introduction

Intuitively, our sense of ownership of our body and body parts appears inherent, stable,

and immutable. However, recent research has shown an incredible degree of malleability in

our sense of body ownership and perception. For example, using simple and brief manipu-

lation of sensory input, the subject may experience ownership over another person’s body

and disownership of one’s body (Petkova and Ehrsson, 2008), may experience the body in

another location (Ehrsson, 2007; Lenggenhager et al., 2007), or may adopt ownership of arti-

ficial bodies (van der Hoort et al., 2011) or body parts (Botvinick and Cohen, 1998; Tsakiris

and Haggard, 2005). While the protocols and brain regions involved in these alterations

of body ownership have been investigated by recent studies, the governing rules and com-

putational mechanisms of body ownership remain poorly understood (Ehrsson et al., 2004;

Gentile et al., 2013; Tsakiris et al., 2007). The goal of this study was to gain insight into the

principles that govern body ownership in humans. To this end, we used a well-established

and extensively studied body-ownership illusion known as Rubber Hand Illusion (RHI).

In the RHI (Armel and Ramachandran, 2003; Botvinick and Cohen, 1998; Tsakiris and

Haggard, 2005) a dummy hand is misattributed to oneself when positioned in an anatomi-

cally and posturally plausible location near the occluded real hand and stroked synchronously

with that of the occluded real hand. The original paradigm used for the study of the illusion

consisted of occluding a participant’s arm and placing a visible rubber hand medial to it, and
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stroking the index fingers of both with paintbrushes either synchronously or asynchronously.

Such experiments led to the conclusion that the synchrony of the stroking is a critical condi-

tion for the illusory experience. For instance, Manos Tsakiris and Patrick Haggard state in

one of the classic RHI studies that “the necessary condition for the inducement of the illu-

sion is the presence of synchronized and spatially congruent visual and tactile stimulation”

(Tsakiris and Haggard, 2005). It has also been reported that the rubber hand must be in a

position that is both anatomically plausible and congruent with the real hand’s posture in

order for the illusion to occur (Tsakiris and Haggard, 2005).

In the original demonstration of this effect and several subsequent studies, the illusion

was assessed by two measures: ratings on a questionnaire that assessed degree of ownership

for the fake hand, and change in the localization of the hidden hand after exposure to the

rubber hand (“proprioceptive drift”). The two measures were found to be correlated and only

subjects receiving synchronous stroking (and not those subjected to asynchronous stroking)

experience the illusion and exhibit the aforementioned proprioceptive drift. In addition,

the RHI can cause an increase in skin conductivity – a physiological measure of anxiety or

arousal – in response to a threat to the rubber hand (Armel and Ramachandran, 2003).

While several qualitative neural models have been proposed to describe the brain areas

that may be involved in this intriguing phenomenon, as well as their hypothesized processing

and communication (Makin et al., 2008; Tsakiris, 2010), computational theories have yet to

emerge. The Rubber Hand Illusion obviously involves interactions among visual, tactile and

proprioceptive modalities. Furthermore, the perception of the illusion can be characterized

as inference of a common cause for proprioceptive, tactile and visual sensations, whereas

the absence of illusion can be characterized as perception of independent sources for the
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visual (rubber hand), and proprioceptive and tactile (real hand) sensations. Therefore, the

perception of the RHI appears to depend on a process of causal inference operating on three

sensory stimuli.

A Bayesian causal inference model (Beierholm et al., 2009b; Kording et al., 2007; Mag-

notti et al., 2013; Shams et al., 2005; Wozny et al., 2008, 2010) has been shown to successfully

account for a variety of human multisensory perceptual phenomena, and a recent human

fMRI study has provided further support for the brain carrying out this type of computation

(Rohe and Noppeney, 2015). This model makes an inference about the causal structure of

the sensations, namely whether they have a common cause or independent causes, based

on the similarity of the sensory signals and the prior probability of a common cause. The

stimulus properties (location, time, etc.) will then be estimated according to the inferred

causal structure, entailing integration of senses only if warranted by the inferred causal ori-

gin. Therefore, both the causal inference and integration problems are solved in a coherent

and unified fashion. Of interest, this model has accounted for multisensory integration of

spatial information (Beierholm et al., 2009b; Kording et al., 2007; Wozny et al., 2010), as well

as temporal information (Wozny et al., 2008), and crossmodal sensory recalibration (Wozny

and Shams, 2011a). As the RHI involves all of these aspects, namely, spatial and temporal

crossmodal interactions, crossmodal recalibration, and causal inference, the Bayesian causal

inference framework appears to be the ideal framework for a computational understanding

of the RHI. Therefore, in this study, we adopted this framework and examined whether

Bayesian causal inference can account for the RHI.
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2.3 Bayesian Causal Inference Model

Method

The Bayesian causal inference framework adopted here to model the RHI operates on

both temporal and spatial information in order to infer the causal structure that is most

likely to have produced the sensory signals (Figure 2.1).

χv, τv χp, τt χv, τv χp, τt

C = 2

C

C = 1

Rubber 
Hand

Hand (X, T) Real 
Hand

(X1, T1) (X2, T2)

Figure 2.1: Rubber Hand Illusion as Causal Inference. Spatial signals (χ) and temporal
signals (τ) coming from the visual (χv, τv) and somatosensory modalities (proprioception:
χp, tactile: τt) are either integrated or segregated depending on whether the brain infers a
common cause or independent causes for the sensations.

A visual cue to the location of the rubber hand and a proprioceptive cue to the location

of the real hand provide spatial information, while a visual cue to timing of the seen stroking

of the rubber hand and a tactile cue to the timing of the felt stroking of the real hand provide

temporal information (Figure 2.1).
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When stroking of the fingers occurs, both spatial and temporal information is available for

the inference process. We modeled the spatiotemporal sensory input as bivariate Gaussians

(see Figure 2.2). The assumption of a Gaussian distribution for proprioception is supported

by distributions of proprioceptive localization judgments reported below in experiment 1. We

tested the normality of these distributions and found that between 70-80% of subjects’ data

passed the Shapiro-Wilk, Anderson-Darling, Jarque-Bera, and Lilliefors’ tests of normality.

In addition, we make the assumption that the spatial (χ) and temporal (τ) signals are

statistically independent, which allows us to derive an analytic solution to the combined

likelihoods in the equations. Although tactile-proprioceptive interactions have been observed

whereby a touch reduces the magnitude of errors in proprioceptive localization judgments

without altering their pattern (Rincon-Gonzalez et al., 2011), this effect was small and

confined to the right hand independently of handedness. Given that our experiments involved

proprioceptive localization of the left hand only, and for the sake of parsimony, we assumed

independence of tactile and proprioceptive signals.

The posterior probability of a causal structure given the visual (v), tactile (t), and pro-

prioceptive (p) sensory signals is computed using Bayes Rule as follows:

p(C|χv, χp, τv, τt) = p(χv, χp, τv, τt|C)p(C)
p(χv, χp, τv, τt)

(2.1)

where C is a binary variable denoting the causal structure (1 vs. 2 causes); χv and χp denote

the visual and proprioceptive sensations of location, respectively; and τv and τt denote the

visual and tactile sensations of timing, respectively. Therefore, the posterior probability of
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the signals having a single cause in the environment is computed as:

p(C = 1|χv, χp, τv, τt) = p(χv, χp, τv, τt|C = 1)p(C = 1)
p(χv, χp, τv, τt|C = 1)p(C = 1) + p(χv, χp, τv, τt|C = 2)(1− p(C = 1))

(2.2)

where the likelihood probability is:

p(χv, χp, τv, τt|C = 1) =
∫∫

p(χv, χp, τv, τt|X,T )p(X,T )dXdT (2.3)

and p(C = 1) is the prior probability of a common cause. X and T denote spatial and

temporal attributes of the stimuli, respectively, which give rise to the visual (χv, τv) and/or

somatosensory (χp, τt) neural representations. They are modeled as continuous random

variables (X ranges across the azimuthal space with zero indicating body midline; T spans

the duration of a trial with zero indicating the start of a trial), and have the following priors:

N (µX , σX) and N (µT , σT ), where N (µ, σ) stands for a normal distribution with mean µ and

standard deviation σ. Equation 2 shows that two factors contribute to the inference of a

common cause: the likelihood (the first term in the numerator) and the prior (the second

term in the numerator). A high likelihood (Equation 3) occurs if the spatiotemporal sensory

signals are similar, such that greater similarity of spatial (χv, χp) and/or temporal (τv, τt)

signals results in a greater likelihood that they are generated by a common cause (Equation

3). The prior probability of a common cause, p(C = 1), on the other hand, is independent

of the present sensations, and depends on the observer’s prior experience.

We assume that the nervous system tries to minimize the mean squared error in the

spatiotemporal estimates of the events:

Cost = (X̂ −X)2 + (T̂ − T )2 (2.4)
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Therefore, the optimal estimates under this quadratic error will be weighted averages of the

two causal models, which is called model averaging. This implies that the optimal estimates

will in most cases include influences of both causal models, except in the most extreme cases

where the evidence fully supports one or the other. The optimal estimate of the position of

the observer’s arm, X̂p, calculated according to Bayes rule, will thus be:

X̂p = p(C = 1|χv, χp, τv, τt)X̂p,C=1 + (1− p(C = 1|χv, χp, τv, τt))X̂p,C=2 (2.5)

where X̂p,C=1 represents the best estimate of proprioceptive stimulus location under the

assumption of common cause, which is thus equivalent to X̂v,C=1, the best estimate of visual

stimulus location, both of which are computed according to Bayes Rule as:

X̂v,C=1 = X̂p,C=1 =

χv
σ2
v

+ χp
σ2
p

+ µX
σ2
X

1
σ2
v

+ 1
σ2
p

+ 1
σ2
X

(2.6)

and where X̂v,C=2 and X̂p,C=2 represent the best visual and proprioceptive estimates under

the assumption of independent causes, computed according to Bayes Rule as:

X̂v,C=2 =

χv
σ2
v

+ µX
σ2
X

1
σ2
v

+ 1
σ2
X

and X̂p,C=2 =

χp
σ2
p

+ µX
σ2
X

1
σ2
p

+ 1
σ2
X

(2.7)

Note that this model also produces temporal estimates (T̂v, T̂t: estimated timing of visual

stimulus and tactile stimulus), which have not been described, but would be computed in

an entirely analogous way to the spatial estimates above.

To simulate the spatiotemporal perceptions produced by this model in different tac-

tile stimulation conditions (synchronous and asynchronous), we performed 100,000 trials of

Monte Carlo simulations. We chose realistic values for the parameters. Means for sensory

likelihoods corresponded to typically utilized distances/durations between stimuli (rubber
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hand (χv): 16cm from midline, real hand (χp): 32cm from midline, temporal latency between

stimuli during asynchronous stroking (|τv − τt|: 0.5-1 seconds). In addition, we simulated

the effect of increasing distance between the real and rubber hands by moving the simulated

position of the rubber hand from 16cm to 36cm away from the real hand in intervals of 2cm,

while holding all other parameters constant. The standard deviation of proprioception (σ2
p)

was set to 15mm (Jones et al., 2010; van Beers et al., 1998). Vision is known to have a

superb spatial acuity, and a previous study with similar experimental conditions estimated

this variability to be around 0.36 degrees (van Beers et al., 1998). In our set up, with an eye

to rubber finger distance of ∼ 35-45cm, this translates to a standard deviation of a couple

of millimeters. Therefore, the standard deviation of visual likelihood (σ2
v) was set to 1mm.

The results are robust with respect to the exact value of this parameter. Temporal standard

deviations were set to 20ms for both visual and tactile modalities based on research showing

similar JNDs in a temporal task (Hirsh and Sherrick, 1961). For the sake of parsimony, X

and T were assumed to be statistically independent and their priors to be uninformative.

Therefore, the standard deviation of the spatial prior, σv, and the standard deviation of the

temporal prior, σt, were set to large numbers to approximate uniform distributions. For the

sake of parsimony, the prior probability of common cause, p(C = 1), was set equal to 0.5.

Results

Figures 2.2-2.4 show the simulation results. When the tactile signal is temporally con-

gruent with the visual signal, i.e., when the stroking is synchronous, the inferred probability

of a common cause is high, and the illusion is experienced (Figure 2.2a,b). When there is
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a temporal delay between the two signals, i.e., in the asynchronous stroking condition, the

inferred probability of a common cause is low, and the model favors independent causes,

and thus, the rubber hand and real hand are estimated to be at distinct locations (Figure

2.2c,d). Therefore, the model can account for the RHI.

In addition, when assessing the effect of distance between the rubber hand and the real

hand on the illusion, the inference of a common cause becomes increasingly less probable, and

thus the illusion becomes increasingly weaker, as the distance between the two is increased,

and the illusion starts to vanish as the distance approaches 30cm (Figure 2.3). These results

closely match empirical findings which had shown the illusion deteriorates as a function of

distance, and had found the spatial limits on the experience of the RHI was 27.5cm (Lloyd,

2007).

In order to further examine the validity of the model as the computation underlying

the RHI, we explored additional predictions of the model that can be tested empirically. It

should be noted that in the absence of any tactile stimulation the input is purely spatial.

Depending on the exact degree of sensory noise/precision and the distance between the real

hand and rubber hand, the illusion may or may not occur based on spatial information

alone. If the precision of spatial proprioceptive representations is not very high and/or the

distance between the rubber and real hands is not very large, the inferred probability of a

common cause would be large. In such a case, vision (location of the rubber hand) would

capture proprioception (location of the real hand) and the rubber hand illusion would be

perceived (ownership of the rubber hand would be experienced). The model simulations

for this situation are illustrated in Figure 2.4. Here, in the absence of tactile signals (and

temporal information) the visual and proprioceptive spatial signals are integrated, as shown
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Figure 2.2: Simulation Results a) Synchronous Stroking: Distributions are the likeli-
hoods representing the objective stimulus locations/timings. Marked points are the model
estimates (MAP) of stimulus location/timing. b) Synchronous Stroking: The frequency of
simulation runs in which a common cause is inferred is shown in the shaded bar. c) Asyn-
chronous Stroking: Distributions are the likelihoods representing the objective stimulus lo-
cations/timings. Marked points are the model estimates (MAP) of stimulus location/timing.
d) Asynchronous Stroking: The frequency of simulation runs in which a common cause is
inferred is shown in the shaded bar.
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Figure 2.3: Simulation Results: Spatial Extent. The probability of experiencing the
illusion is plotted as a function of the distance (in centimeters) between the rubber hand
and the real hand. As the distance between the two increases, the illusion becomes weaker
and eventually fails to occur. These results are qualitatively and quantitatively consistent
with empirical findings from human participants (Lloyd, 2007).
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Figure 2.4: Simulation Results: No Stroking. a) Removing the temporal dimension
from the model retains the illusory effect of overlapping spatial estimates. Marked points
represent model estimate (MAP) of hand location. b) The frequency of simulation runs in
which a common cause is inferred is shown in the shaded bar.

by the very close proximity of the spatial estimates. Therefore, the model predicts that if

the distance between the real hand and rubber hand is not very large, the illusion should be

perceived without any stroking, at least for those individuals who do not have very precise

proprioceptive representations. This suggests the possibility of inducing the rubber hand

illusion prior to the application of brush strokes. We tested this prediction experimentally

as described below.
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2.4 Experiment 1

The goal of this experiment was to test the hypothesis that tactile stimulation is not

necessary for the induction of the rubber hand illusion.

Method

Design

As in standard Rubber Hand Illusion studies, the left arm of the participants was hidden

from their view, and a visible rubber hand was positioned in front of the observer in an

anatomically plausible position. Unlike the standard RHI studies that probe the ownership

of the rubber hand and the drift in proprioception of the real hand only after stroking of

the hands, here, the subjective report of ownership and proprioception of the hand were

examined before the application of tactile stimulation. This experiment consisted of four

conditions: ‘sync’, ‘async’, ‘no-stroke’, and ‘no-hand’ (see Figure 2.5).

As the model predicts that synchronous tactile stimulation should strengthen the illusion,

we measured subjective assessment of rubber hand ownership and the drift in proprioception

in a group of subjects who received synchronous tactile stimulation (‘sync’ condition). To

examine the role of synchronization of tactile stimulation, another group of participants re-

ceived asynchronous stimulation (‘async’ condition). In addition, we had a group of subjects

who never received tactile stimulation (‘no-stroke’ condition). To obtain a baseline for both

reports of ownership and proprioceptive perception, a fourth group of participants under-

went the exact same procedures but was not presented with any rubber hands (‘no hand’

condition).
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Figure 2.5: a) RHI Apparatus b) Experiment 1 procedural design
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Participants

Based on pilot data (n = 9), the expected effect size for proprioceptive drift was estimated

to be 0.74, and therefore we aimed for a sample size of 22 subjects per condition to obtain

a statistical power of 0.95. 90 psychology undergraduate students participated for course

credit, and 6 were excluded for the following reasons: 3 for excessive hand movements,

1 for not understanding and complying with instructions, and 2 for outlier responses on

proprioceptive localization. The exclusion criteria were determined prior to the start of data

collection. Outliers were defined as those exceeding 3 standard deviations from the sample

mean. After exclusions the dataset consisted of 84 participants (61 female, mean age =

20.83, 78 right-handers), with 21 in each group. All participants provided written informed

consent and research was approved by the UCLA Institutional Review Board.

Materials

A custom-built box was utilized for the induction of the rubber hand illusion. It measured

70 ∗ 46 ∗ 18 cm3 and was split into two compartments as depicted in Figure 2.5a below. The

box was designed to ensure that participants’ body midline would be at the midpoint of

compartment 2 in order to create symmetry between the rubber and contralateral hands. Two

standard paintbrushes were used to administer tactile stimulation. Opaque black silicone

goggles were used to block the view during the setup of the experiment for each participant.

A large 3∗3 m2 black cloth was used to cover the interface between participants’ arms and the

box. A reinforced block of cardboard with dimensions 70 ∗ 46 cm2 was used to cover the box

in one of two positions depending on the block, as described in the procedures below. A left
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rubber hand was used (48.3cm long from elbow to fingertip, RI Novelty, www.amazon.com).

For additional details see SOM.

Procedure

In the pre-test phase, subjects were seated at a desk and instructed to wear the light-

occluding goggles while the box was positioned in front of them in accordance with Figure

2.5. A cardboard sheet was used to cover the box and an opaque cloth was draped over the

participant’s shoulders and the proximal part of the box in order to eliminate visual position

cues from the arms.

Subjects performed the exact same proprioceptive localization task in the pre-test and

post-test (see Figure 2.5b). After the setup described above, the room was darkened to pre-

clude subjects from using visual cues in the periphery to anchor their responses. Instructions

were given and the task immediately commenced where subjects used a computer mouse with

their right hand to move a cursor on the bottom edge of the screen to the position of their

left index finger along the azimuth. Given the large variability of the proprioceptive estimate

of hand location along azimuth observed in previous studies (Beers et al., 1999; van Beers

et al., 2002) as well as our pilot data, we collected a large number of responses in order to

get a reliable estimate by using the mean of all the responses. Therefore, the measurement

was repeated 40 times and the task took 4 minutes to complete. Proprioceptive drift was

calculated as the mean post-test localization minus the mean pre-test localization.

After the pre-test, subjects’ eyes were covered by the goggles once more while the ex-

perimenter reconfigured the cardboard sheet in the vertical configuration to form a barrier

between the two compartments in order to occlude observer’s view of their left arm. Goggles
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were then removed and participants verbally responded to a question probing their owner-

ship of the rubber hand, namely the third question in the traditional rubber hand illusion

questionnaire – “I feel like the rubber hand is my hand” (Botvinick and Cohen, 1998) – with

response categories ranging from -3 (strongly disagree) to +3 (strongly agree). Depending on

the experimental condition, synchronous or asynchronous visuotactile stimulation was then

applied, or none at all. This stimulation was performed by the experimenter who applied

brushstrokes to the real left hand and the rubber hand in a proximal to distal direction with

each stroke lasting about one second at 1-second intervals. The strokes were performed on

all fingers of the hand, moving from finger to finger pseudorandomly. In this phase, subjects

were repeatedly instructed to refrain from all body movements (see SOM for more detail).

The post-test commenced immediately after the illusion phase of the experiment. Sub-

jects’ eyes were covered by the goggles once more while the box was reconfigured for the

proprioceptive localization task. The vertical cardboard was repositioned to its horizontal

configuration covering the hand. Then, the goggles were removed and subjects performed

the same proprioceptive localization task that they performed in the pre-test. Participants

were again instructed to refrain from moving. After the proprioceptive localization, subjects

were given the full 9-item questionnaire, which they were instructed to respond to using the

mouse (Botvinick and Cohen, 1998).

We chose to emphasize ratings on question three of the full 9-item questionnaire as this

has been consistently found to be the question that most correlates with the other measures

of the illusion as well as directly assess the subjective phenomenology of the experience

(Longo et al., 2008).
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Results

We first tested proprioceptive drift (computed as mean post-test localization minus mean

pre-test localization) against zero and found a statistically significant difference for the ‘sync’

group (t20 = 4.66, p < 0.001, Cohen’s d = 1.02), the ‘async’ group (t20 = 2.69, p = 0.014,

Cohen’s d = 0.59), and the ‘no-stroke’ group (t20 = 2.18, p = 0.041, Cohen’s d = 0.48), but

not for the ‘no-hand’ group (t20 = 1.15, p = 0.262, Cohen’s d = 0.25).

Next, we computed a one-way ANOVA on the proprioceptive drifts across the levels

of the Group variable (‘sync’, ‘async’, ‘no-stroke’, and ‘no-hand’). This analysis showed

a statistically significant main effect of Group, F (3, 80) = 3.53; p = 0.019 (see Figure

2.7a). Three planned comparisons were performed in order to test the role of three factors

in the induction of proprioceptive drift. The role of presence of the rubber hand, the role

of stroking the rubber hand, and the role of synchronicity of stroking were examined by

comparing the proprioceptive drift in group ‘sync’ with those of ‘no-hand’, ‘no-stroke’, and

‘async’, respectively. One-tailed independent groups t-tests showed a significantly larger

proprioceptive drift in the ‘sync’ group compared to that of ‘async’ group (t40 = 2.50, p =

0.009, Cohen’s d = 0.77), as well as that of the ‘no-stroke’ group (t40 = 1.81, p = 0.039,

Cohen’s d = 0.56), and that of ‘no-hand’ group (t40 = 2.94, p = 0.003, Cohen’s d = 0.91).

To confirm that the proprioceptive drift effect did not dissipate across the 40 trials of post-

test localizations, we computed a dependent samples t-test on the means of the first fifteen

and final fifteen trials of proprioceptive localization, which revealed no significant difference

(t83 = −1.38, p = 0.171). Participants’ baseline proprioceptive localizations are shown in

Figure S1 of SOM.
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a b

Figure 2.6: Ownership Ratings Prior to Tactile Stimulation. a) Median pre-test
ratings from groups ‘sync’, ‘async’, and ‘no-stroke’ indicated by black square. Bars indicate
interquartile range. b) Histogram of ownership ratings. The ratings are on a scale of -3 to 3,
whereby -3 and +3 correspond to strong disagreement and strong agreement, respectively,
with the statement “I feel as though the rubber hand is my hand.” **** p < 0.0001

To address the question of whether illusion can occur in the absence of any tactile stimu-

lation, we analyzed the pre-test (i.e., before any tactile stimulation was applied) measure of

ownership from the groups that were presented with a rubber hand: ‘sync’, ‘async’, and ‘no-

stroke’. Since these groups did not differ at this point in the procedure, we collapsed the data

across all three groups. This analysis revealed that 73% of participants rated the rubber hand

as their own hand. As subjective ownership ratings are ordinal, a sign test was computed

and revealed that the median of the pooled ownership ratings in the pre-test for the groups

that were presented with a rubber hand (median = 2, indicating ownership) differed from

zero, p < 0.000 (see Figure 2.6). Change in ownership scores were computed by subtract-

ing the pre-test ratings from the post-test ratings, and were submitted to a Kruskal-Wallis

one-way analysis of variance which revealed that there was a significant difference in median
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a b

Figure 2.7: Post-Test Results. a) Proprioceptive Drift: The change in proprioceptive
localization from pre-test to post-test. n = 21. * p < 0.05, ** p < 0.01, *** p < 0.001.
b) Ownership: The median change in subjective ownership report from pre-test to post-test
indicated by black squares. Bars display interquartile range. ** p < 0.01, *** p < 0.001

rating change between the three groups that saw the rubber hand, χ2
2 = 8.7, p = 0.013.

Planned comparisons (sign tests) resulted in a significant median difference between ‘sync’

and ‘async’: p = 0.049, and a trend between ‘sync’ and ‘no-stroke’: p = 0.077 (see Figure

2.7b).

An interesting finding is that the ‘async’ group also exhibited a proprioceptive drift,

albeit to a much smaller degree than that of the sync group. The ‘async’ group also showed

only a trend for, and not a significant, decrease in ownership ratings. We believe the fact

that asynchronous stroking did not entirely extinguish the perception of an illusion is due to

the fact that the timing of the visual and tactile signals were 100% correlated. As shown by

Parise and colleagues (Parise et al., 2012), this can induce the perception of a common cause.

Alternatively, it may also be that this correlated stimulation caused a temporal recalibration

between the two modalities and gradually brought the visual and tactile modalities in sync.
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a b

Figure 2.8: Ownership and Proprioceptive Drift. Scatterplot of ownership ratings
plotted against proprioceptive drift in the (a) pre-test and (b) post-test from the three
groups which were presented with a rubber hand. Large outlined circles represent means for
those who gave the same ownership response.

Such fast recalibration of visual-tactile temporal synchrony has been previously reported

(Fujisaki et al., 2004). We expect that a completely random relative timing of the rubber

hand and real hand strokes would have more effectively suppressed the illusion and the

consequent proprioceptive drift.

Finally, we examined correlations between the ownership ratings and the proprioceptive

drifts separately for ratings from the pre-test and the post-test. The latter replicated previous

reports of a significant correlation between drift and ownership (measured after application

of tactile stimulation), r = 0.38; p = 0.002 (see Figure 2.8b). In addition, we found a

significant correlation between the pre-test ownership ratings and drift, r = 0.31; p = 0.013

(see Figure 2.8a).
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2.5 Experiment 2

The goal of this experiment was to examine whether RHI can occur in the absence of

tactile stimulation (stroking) using skin conductance responses (SCR).

Method

Design

We measured the participants’ SCR in response to viewing of the rubber hand and

to the threat to the rubber hand, and we collected questionnaire data as in Experiment

1. This experiment consisted of three between-group conditions, which differed only in

the presentation of the rubber arm, as follows. The experimental condition was the same

as the ‘no-stroke’ condition in Experiment 1, where the rubber hand was presented in an

anatomically plausible position (‘plausible-arm’ condition). In order to examine the role of

the illusion (ownership) in putative changes in SCR, we needed a control condition in which

the illusion does not occur. As reported by previous studies, positioning the rubber hand in

an anatomically implausible position would not induce the illusion (Tsakiris and Haggard,

2005). Therefore, in a control condition, we placed the rubber hand in front of subjects

in a vertical orientation with the hand pointing downward, 104cm away from the subjects’

shoulder and hanging from the bottom of a shelf mounted on the wall, outside of peripersonal

space. We refer to this condition as ‘hanging arm’. In our pilot study we noticed that for the

illusion to be entirely eliminated the rubber hand needs to be outside the peripersonal space,

hence the choice to position the arm at that distance. However, this difference in the distance

of the rubber hand from the observer between the plausible-arm and hanging-arm conditions
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meant that the simulated threat would also be at different distances from the observer in the

two conditions, thus creating a confound for any potential difference in SCRs. To address

this confound, we included an additional condition in which the threat was presented at the

same location and distance from the observer as that of the plausible-arm condition, however

no rubber hand was presented. We refer to this condition as the ‘no arm’ condition. If the

SCR of the plausible-arm condition is higher than that measured in both the hanging-arm

condition and the no-arm condition, it would indicate that the higher SCR is due to the

percept of the illusion and cannot be attributed to the viewing of the rubber arm alone or

scissors alone.

An increase in level of arousal (which can be induced by fear or surprise) is generally

believed to result in an increase in SCR (Epstein and Roupenian, 1970; Staub et al., 1971).

When observers perceive the rubber hand as their own hand, this is usually accompanied

by a feeling of surprise and astonishment, thus raising arousal. Similarly, the observation of

a threat to a (perceived) body part causes fear and increased arousal, and has been shown

to increase SCR (Armel and Ramachandran, 2003). Therefore, we hypothesized that the

majority of observers in the group that was presented with anatomically plausible rubber

hand would report experiencing the illusion (as in Experiment 1), and these and only these

participants would show an increased SCR to the viewing of the rubber hand and even a

higher SCR response to the threat to the rubber hand.

Participants

We aimed for a sample size of 16-20 participants per condition following a previous

study using the SCR measure of RHI (Armel and Ramachandran, 2003). 58 psychology
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undergraduate students participated for course credit, and 7 were excluded due to technical

malfunctions relating to running the code and electrode type used. After exclusions the

dataset consisted of N = 51 (35 female, mean age = 20.7, 47 right-handers). Participants

were pseudo-randomly assigned to three groups (see below for description), n = 17 per group.

All participants provided written informed consent and research was approved by the UCLA

Institutional Review Board.

Materials

The same experimental setup and material were the same as those in Experiment 1. In

addition, a custom built device composed of an electronic prototyping platform (Arduino SA,

Italy) and 3M Red Dot Ag/AgCl electrodes was used for measuring skin conductance. This

device was validated by running concurrent skin conductance measurements with an industry

standard device (Biopac Systems, Inc.) and signals were correlated at r = 0.58, p < 0.000.

Abrasive skin prep gel was used for electrode application and a pair of scissors was used to

simulate a threat to the rubber hand.

Procedure

The subjects were seated at a desk and skin prep gel was applied to the second joints of

the palm side of index and middle finger of subjects’ right hand. Two electrodes were placed

on the prepped sites and connected to the skin conductance measuring device. Subjects

were instructed to wear the light-occluding goggles, and to relax for 240 seconds. At this

point, the subjects’ skin conductance started being recorded at a sampling rate of 10Hz

and was continued for the duration of the experiment. The experimenter then set up the
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Figure 2.9: Experiment 2 procedural design.
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experimental apparatus which was identical to the setup of Experiment 1. After this setup,

the subjects were instructed to keep both their arms still and to relax for the remainder of

the 240 seconds interval.

After the relaxation period, the goggles were removed and the participants attended to a

location indicated by the experimenter. In the ‘plausible arm’ and ‘hanging arm’ condition,

this was the rubber hand. In the ‘no arm’ condition, this location was the empty space

where the rubber hand would have been placed. This moment was the first time-point at

which a skin conductance response (SCR) was computed. We refer to this time-point as

‘Eye Opening’. After 60 seconds of delay, the experimenter simulated a threat to the index

finger of the rubber hand by pretending to aim to cut the finger using a pair of scissors, and

maintained this simulated threat for 30 seconds. The beginning of this simulated threat is

the onset of the second SCR time interval (we refer to this time-point as ‘Threat’). In the

‘no arm’ condition, the experimenter applied the threat to the attended empty space. At

the end of this exposure, subjects in the plausible-arm and hanging-arm groups were asked

to rate their agreement with the statement ‘I felt as if the rubber hand were my hand’ on a

scale ranging from -3 to 3 (see Figure 2.9).

Analysis

For each of the two time-points (removal of light-occluding goggles, application of threat),

the skin conductance response (SCR) was calculated as the maximum skin conductance

recorded within 1-5 seconds of that time-point, minus the minimum conductance during

that same time window. To correct for non-normally distributed responses the following

transformation was computed: log[SCR + 1] (Armel and Ramachandran, 2003; Christie and

74



a b

Figure 2.10: Results. a) Median ownership ratings after the end of the experiment indicated
by black squares. Bars display interquartile range. b) Elicited SCR at two time points, “eye-
opening” and “threat”.

Venables, 1980).

Results

As in Experiment 1, the majority (88% in this experiment) of the participants in the

‘plausible-arm’ condition reported ownership over the rubber hand (i.e., a positive rating on

the ownership question). The median ownership rating of this group was 2.0, which a sign

test revealed to be significantly different from zero (p < 0.001, see Figure 2.10a), suggesting

a robust illusion for the participants in this group. The hanging-arm group, on the other

hand, reported not experiencing an RHI as measured by the ownership ratings, the median of

which was -3, which a sign test revealed to be significantly different from zero (p < 0.001, see

Figure 2.10a). As expected, the plausible arm group showed significantly higher ownership

ratings than the hanging arm group (paired sign test: p < 0.000).

Next, we examined the SCR responses at each of the two time points, eye-opening and
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threat (see Figure 2.10b), across the three groups. One-way ANOVAs with the factor Con-

dition (plausible-arm, hanging-arm, no-arm) at both time-points (eye-opening and threat)

showed significant effect of condition (F (2, 48) = 8.34, p < 0.001; F (2, 48) = 5.19, p = 0.009,

respectively). Planned comparisons between plausible-arm and the other two groups at both

eye-opening and threat times showed a significantly higher SCR for the plausible-arm group

compared to hanging-arm group (two-tailed independent groups t-tests, t32 = 3.68, p <

0.001, Cohen’s d = 1.26, t32 = 2.57, p = 0.007, Cohen’s d = 0.88, respectively) and no-arm

group (t32 = 3.1, p < 0.01, Cohen’s d = 1.06, t32 = 3.04, p < 0.01, Cohen’s d = 1.04, re-

spectively) (see Figure 2.10b). These results indicate that the increased SCR at eye-opening

time cannot be explained by a general arousal from any visual stimulation (as in the no-

arm group) or the surprise associated with seeing a rubber hand (as in the hanging-arm

group). In fact, if the increased SCR was due to the observation of an odd stimulus, then

the hanging-arm group should have exhibited the highest increase because that stimulus is

arguably the most bizarre or unusual stimulus among the three conditions. Similarly, the

increased SCR at the time of threat cannot be explained by the observation of movement

of a sharp object per se (as the no-arm control), or the observation of action of a sharp

object near a fake body arm (as in the hanging-arm condition). Therefore, the increased

SCR appears to be associated with the ownership of the rubber arm.

If indeed the ownership of the rubber arm is the underlying factor for the observed

increased SCR, then one would expect that a stronger sense of ownership would entail a

stronger skin conductance response. We calculated the correlation between subjective own-

ership ratings and SCRs across participants in groups that were presented with a rubber-arm

and provided subjective reports of ownership. There was a strong and statistically signifi-
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Figure 2.11: Ownership and SCR. Scatterplot of ownership ratings plotted against the
logarithm of the SCR to Eye-Opening (a) and to Threat (b) from the two groups which were
presented with a rubber hand. Large outlined shapes represent means for those who gave
the same ownership response.

cant correlation, r = 0.47, p = 0.005, between the ownership ratings and the eye-opening

SCRs, and also between the ownership ratings and the threat SCRs, r = 0.39, p = 0.023 (see

Figure 2.11). Therefore, the objective and subjective measures of ownership consistently and

strongly confirm the hypothesis that RHI can occur in the absence of tactile stimulation.

As can be seen in Figure 2.7b, the magnitude of the eye-opening SCR is comparable to

that of threat SCR. We believe that the large SCR change at eye-opening time reflects the

subjects’ surprise at the dramatically changed appearance of what they perceive to be their

hand, i.e., the rubber hand. The threat is presented after 60 seconds of delay. We speculate

that this surprise and perhaps even the illusion fade with time and hence, the smaller SCR

in response to the threat. It is also possible that the smaller SCR stemming from the threat

may reflect a ceiling effect of the initial strong and sustained response to eye-opening. We

interpret the strong skin conductance response to the first glimpse of the rubber hand as a
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reflection of subjects’ surprise at the heightened salience of the hand and the conflict that

this produces with mental expectations about their hand appearance.

2.6 Discussion

While our intuition suggests that our sense of body ownership is in-born, fixed and im-

mutable, recent research has shown otherwise. Simple and brief manipulations of our sensory

experience can induce radical alteration of our body ownership and perception. We used one

of these paradigms, namely RHI, to investigate the rules that govern body ownership. The

Rubber Hand Illusion was discovered 16 years ago, and has been studied extensively since

that time. However, the computational mechanisms of this illusion, which would provide

insight into why this illusion occurs, have been largely unexplored and unaddressed to date.

In recent years, there has been much progress in our understanding of computational rules

of multisensory perception. Specifically, it is now generally accepted that multisensory per-

ception in natural environments involves two computational problems, the problem of causal

inference – determining which signals are caused by the same source and which are caused

by different sources – and the problem of integration – how to integrate the sensory signals

originating from the same source. A Bayesian causal inference model (Kording et al., 2007;

Shams and Beierholm, 2010; Shams et al., 2005), which addresses both of these problems

in a normative and unified fashion, has been shown to account remarkably well for multi-

sensory perception of the environment in spatial domain (Beierholm et al., 2009b; Kording

et al., 2007; Wozny et al., 2010; Wozny and Shams, 2011a), and temporal domain (Shams

et al., 2005; Wozny et al., 2008), and can account for two well-known illusions: Ventriloquist
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illusion, and Sound-Induced Flash Illusion.

We adopted this model to examine whether it can account for the RHI. We included three

modalities (proprioception, vision, touch) and both spatial and temporal information, the

former provided by proprioception and vision and the latter provided by vision and touch.

Our simulations accounted for the classic findings on RHI, namely that synchronous stroking

produces the perception of a common cause for visual and tactile stimuli, and therefore the

RHI is experienced, whereas asynchronous stroking produces the perception of independent

causes, and no illusion is experienced. This provides the first computational account of

the RHI. Furthermore, the model makes predictions about the spatial limit on the illusion,

namely it predicts that the illusion will get weaker as the distance between the rubber hand

and real hand increases, and starts to vanish as the distance approaches 30cm (see Figure

2.3) – a result which concords very closely with empirical findings reported in the literature

(Lloyd, 2007).

To further explore the validity of this model, we investigated its untested predictions (but

see (Rohde et al., 2011)). Specifically, the model predicted that the illusion can occur based

purely on visual observation of the rubber hand, i.e., based purely on proprioceptive-visual

integration. It is important to note that this prediction is in stark conflict with the common

wisdom in RHI literature. It has been generally believed that visuotactile stimulation, in

the form of synchronous stroking of the rubber hand and real hand, is required to induce

the illusion. For instance, Holle and colleagues state that “it is rather uncontroversial that

synchrony of touch with vision is a necessary condition” (Holle et al., 2011). Therefore,

this prediction would provide a strong test of the model. We tested this prediction in two

experiments that used different measures of ownership. The results of both experiments
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indicated that a majority of participants experienced a vivid illusion despite not receiving

any tactile stimulation. These results strongly confirm the prediction of the model. The

model also predicted that synchronous stroking should strengthen the perception of the

illusion. Indeed both proprioceptive drift data (between-group, Figure 2.7a) and ownership

data (within-subject, Figure 2.7b) strongly confirm this prediction.

Proprioceptive drift, which is generally associated with the perception of the RHI (and

has often been used as a measure of RHI), is a form of spatial recalibration of proprioception

by the visual modality. Proprioceptive adaptation has been the subject of several studies

(Hay and Pick Jr., 1966; Held and Hein, 1958; van Beers et al., 2002), although none investi-

gated the relationship between inference of a common cause and the degree of recalibration.

However, the relationship between the perception of a common cause and recalibration has

been investigated in an audiovisual spatial task (Wozny and Shams, 2011a). This study

showed that the magnitude of the visually-induced auditory spatial recalibration was signif-

icantly larger when a common cause is inferred (Wozny and Shams, 2011a). Consistent with

these previous findings, here we found that ownership ratings both prior to and after stroking

were significantly correlated with proprioceptive drift, indicating that the stronger the sense

of a common cause for the proprioceptive and visual signals the stronger the recalibration

of proprioception is by vision. The fact that pre-test ownership ratings correlated with the

subsequently observed proprioceptive drift supports our conclusion that the illusion occurs

in the absence of tactile stimulation, and that these pre-test ownership ratings index the

same illusion that previous studies have assessed after stroking, despite solely arising from

visuo-proprioceptive integration in this case.

The baseline proprioceptive bias that we have observed (see Figure S1) is consistent
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with previous research reporting an accumulating drift in proprioceptive localization in the

direction of the body midline (Paillard and Brouchon, 1968; Wann and Ibrahim, 1992). How-

ever, this bias has not been found by other studies that used different settings (Desmurget

et al., 2000) and the exact factors/conditions underlying the bias remain unclear and require

further study.

There are several procedural differences between our experiments and previous studies of

RHI. We believe that some of these procedural aspects greatly enhance the illusion and may

be the reason why we obtain the illusion in the absence of stroking whereas previous studies

have not. First, the passive placement of the arm in the box under conditions of visual

occlusion dampens the proprioceptive signal and reduces accuracy of localization (Paillard

and Brouchon, 1968). This may serve to facilitate the integration of this noisy signal with

the very reliable visual signal. Second, in our experiments the rubber hand’s position was

symmetrical with respect to the contralateral real hand (see Figure 2.5a), which may have

the effect of increasing the anatomical and postural plausibility of the rubber hand. Third,

in our experiments, the subjects did not see the rubber hand prior to the beginning of the

trial (at which time the rubber hand was already in place and the real hand was already

hidden) and did not see the experimenter hiding their real hand. Their eyes were covered

throughout the time of experimental setup. This prevents the formation of a perceptual

decision regarding the real and rubber hands prior to the subjects’ exposure to them in the

experimental positions. Our between-groups design additionally did not allow the observer

to form such a perceptual decision in a different condition. Finally, we took great care to

ensure that subjects were not able to see the proximal discontinuity between the rubber

hand and their own body and to remove cues indicating that their hand was hidden behind
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the cardboard divider, by covering this entire region (from shoulder downward to the rubber

hand) with a thick black cloth. We believe these factors collectively resulted in a strong

boost to visual-proprioceptive integration that gave rise to the illusion of ownership prior

to the application of any tactile stimulation. In addition, we wonder whether the design of

past studies of rubber hand illusion, in which the questionnaire is invariably administered

only after stroking is applied, may have precluded the detection of the visuo-proprioceptive

illusion in those participants who did experience it.

Notably, a recent study of RHI reported a proprioceptive drift in a condition that did

not include tactile stroking (Rohde et al., 2011). However, subjects anecdotally reported

not experiencing ownership of the rubber hand. Furthermore, the magnitude of propriocep-

tive drift in this condition was not smaller than that in the synchronous stroking condition.

While the finding of the proprioceptive drift in the no-touch condition1 is consistent with our

findings, the absence of increase in the drift in the synchronous stroking condition, and the

apparent lack of illusion in the no-touch condition are at odds with our results. We suspect

that some of the same factors discussed above may play a role in these differences. For exam-

ple, in Rohde et al.’s study, the rubber hand’s position was aligned with subjects’ midlines,

rather than with the shoulder and this may strain the postural plausibility. Proprioceptive

drift was computed based on only three measurements in each of the pre-test and post-test

proprioceptive localization. Finally, and perhaps most importantly, the within-subject ex-

perimental design and the fact that the no-touch condition was preceded by synchronous

and asynchronous stroking conditions may have caused carry-over effects in the no-touch
1The subjective ownership ratings were not obtained in that condition, and the debriefing data were not

reported in the paper.
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condition. In contrast, in the present study, proprioceptive drift was computed from the

mean of 40 measurements (in pre-test and post-test each), all participants in rubber hand

conditions had no prior exposure to the rubber hand (due to the between-groups design),

and were asked about their experience of ownership immediately after being presented with

the rubber hand.

The RHI has been studied extensively and several studies have shed light on the factors

that can modulate the strength of the illusion. For example, it has been shown that asyn-

chronous stroking or a large distance between the rubber hand and the real hand can weaken

or disrupt the illusion (Botvinick and Cohen, 1998; Tsakiris and Haggard, 2005). While the

RHI has been viewed as a manifestation of visual-tactile integration, in the absence of a

computational framework there has been no explanation for why the aforementioned factors

matter and whether there are other factors that can influence the illusion. The current study

fills this void, and provides a coherent understanding of the various facets of the illusion.

The Bayesian causal inference model shows that several factors contribute to the per-

ception of a common cause and hence, the rubber hand illusion. These include the overlap

between the proprioceptive and visual spatial estimates, which depends on both the spatial

proximity of the rubber hand and the real hand as well as the degree of proprioceptive noise

(and visual noise – although in most individuals fairly negligible), the congruency between

tactile and visual sensations, and the a priori tendency to integrate crossmodal stimuli. This

model predicts that the illusion is stronger the nearer the fake and real hand are to each

other, the noisier the proprioception modality is, the more congruent the temporal pattern

of stroking is across visual and tactile modalities, and the stronger the tendency to integrate

signals. If one of these factors is weak, however, it will not necessarily break the illusion, as
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the other factors can compensate and collectively provide sufficient evidence for a common

cause. It is the strength of the overall evidence for a common cause that determines the

probability of inferring a common cause and the illusion, and not any individual factor by

itself. The finding that the pretest proprioceptive responses were biased by approximately

3.15cm towards the midline (see Figure S1) – and thereby towards the to-be-seen rubber

hand – may provide a clue as to why the majority of our participants experienced the illu-

sion before any tactile stroking was applied. If their proprioceptive estimate of their hand

location is both imprecise and inaccurately skewed in this manner, the visual signal of the

rubber hand would be more likely to be integrated with it. The model not only provides

a quantitative description of the conditions that give rise to the illusion, but also explains

that the RHI occurs as a result of optimal statistical inference about the causal structure

and spatiotemporal properties of the sensations (with an explicit specification of the cost

function that is being optimized).

While the Bayesian model presented here was intended only to model RHI in its stan-

dard form, the framework is nevertheless general and extendable to incorporate additional

variables and to account for the RHI’s variants. In the movement-induced RHI (Kalckert

and Ehrsson, 2012; Walsh et al., 2011) (wherein the synchronous movement of the rubber

hand and the real hand induces the illusion), the spatial conflict between the proprioceptive

and visual estimates is compensated for by the temporal congruence of the kinesthetic and

visual estimates. The kinesthetic signals would substitute for the tactile signals in the cur-

rent model. In the self-touch RHI (Ehrsson et al., 2005) (wherein the active hand touches

the rubber hand synchronously with a touch of the passive hand), there is a spatial conflict

between two proprioceptive estimates, that of the passive hand, and that of the actively
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touching hand. This spatial conflict is compensated for by the synchrony of the two tactile

signals, the one felt by the passive hand and the one felt by the actively touching hand. In

the invisible hand illusion (Guterstam et al., 2013), there is no rubber hand and the stroking

is applied to empty space, inducing the illusion of ownership of an invisible hand. The main

difference between this illusion and the conventional RHI is in the visual object recognition

computations that result in perception of a hand in the conventional RHI and no object in

this variant. As the current model does not include these computations, but rather assumes

these object processing steps have already been completed and provided the perception of

a posturally congruent hand, the model in its current form is not equipped to capture this

difference. Having said that, if we nonetheless assume that the kinematic details of the

stroking of the invisible hand convey sufficient information to the hand recognition module

in the brain which would in turn infer the existence of a transparent hand, then the output

of this object recognition module would indeed provide the visual signal that our model uses

as input, though in a degraded form.

It has also been shown that if the rubber hand is positioned in an anatomically implausible

way (Tsakiris and Haggard, 2005), the illusion does not occur. The model in its current form

makes the simplifying assumption that the rubber hand has an anatomically plausible and

congruent posture. The model currently does not incorporate hand posture as a variable and

therefore, is not equipped to incorporate the congruency in posture as a factor contributing to

the inference of a common cause (and hence, the illusion). Should the model be extended to

incorporate posture as an additional random variable, the incongruence between the posture

of the real and fake hand would decrease the probability of a common cause and can break

the illusion. Finally, this model is not intended to capture the full temporal dynamics of the
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emergence of the illusory percept, reported by several studies to be 5-10 seconds after the

administration of stroking (Ehrsson et al., 2004; Lloyd, 2007; Ehrsson et al., 2005; Guterstam

et al., 2013). However, it can be extended to do so. As the evidence for the synchrony of

stroking increases, so does the evidence for common cause, strengthening the illusion. In

cases where the inference of common cause had not yet exceeded p = 0.5 (i.e., where there is

no experience of the RHI), sustained stroking in synchrony would accumulate the evidence

and could eventually tip the balance towards inference of a common cause.

In conclusion, a normative Bayesian model that makes an inference about the causal

structure of sensory stimuli, namely visual, proprioceptive and tactile signals, based on

the similarity of the stimuli and prior knowledge can account for the rubber hand illusion.

Moreover, several predictions of this model were confirmed empirically providing strong

support for the notion that a Bayesian causal inference process is involved in the perception

of body and experience of body ownership. More specifically, these results suggest that

when the spatio-temporal information conveyed by the senses are sufficiently congruent, a

common cause for the sensations is inferred by the nervous system leading to the experience

of unified source and body ownership. If an incongruity is artificially introduced between two

of the senses (e.g., between visual and proprioceptive spatial information) as in the studies

of rubber hand illusion or out-of-body experience, then additional information providing

support for a common cause, such as congruent tactile temporal information, may be needed

to provide sufficient “evidence” for a common cause and the perception of body ownership,

and hence the illusion.

The studies of body ownership such as rubber hand illusion and out-of-body experience

(Armel and Ramachandran, 2003; Botvinick and Cohen, 1998; Ehrsson, 2007; Lenggenhager
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et al., 2007) have already revealed that humans’ body representation and sense of body

ownership is remarkably malleable. What the current findings show is that this process can

be modeled as a sophisticated and statistically optimal rule of inference (Bayesian causal

inference) which also appears to govern other perceptual processes. Therefore, it appears

that our perception and consciousness of self is no different in principle than our perception

of the outside world: it follows the same rules, and it can be altered in the same fashion.
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Figure 2.12: Figure S1. Pre-Test Proprioceptive Bias. Proprioceptive localization
responses of all participants during pre-test revealed a statistically significant bias towards
the midline (t83 = 7.88, p < 0.0001). The average bias across participants was 3.15cm, and
the average standard deviation of subjects’ 40 localization responses on this task was 1.3cm.
**** p < 0.0001.
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Chapter 3

Visual-Somatotopic Interactions in

Spatial Perception

3.1 Abstract

Ventriloquism is a well-studied multisensory illusion of audiovisual spatial perception

in which the perceived location of an auditory stimulus is shifted in the direction of a syn-

chronous but spatially discrepant visual stimulus (Howard and Templeton, 1966). This effect

is due to vision’s superior acuity in the spatial dimension, but has also been shown to be

influenced by the perception of unity of the two signals (Wallace et al., 2004). We sought to

investigate whether a similar phenomenon may occur between vision and somatosensation

along the surface of the body, as vision is known to possess superior spatial acuity to so-

matosensation. We report the first demonstration of the visuotactile ventriloquist illusion:

subjects were instructed to localize visual stimuli (small white disks) or tactile stimuli (brief

localized vibrations) that were presented concurrently or individually along the surface of
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the forearm, where bimodal presentations included spatially congruent and incongruent stim-

uli. Subjects showed strong visual-tactile interactions. The tactile localization was strongly

biased in the direction of the visual stimulus, and the magnitude of this bias decreased

as the spatial disparity between the two stimuli increased. The Bayesian causal inference

model which has previously been shown to account for auditory-visual spatial localization

and ventriloquism effect also accounted well for the present data. Therefore, crossmodal

interactions involving spatial representation along the surface of the body follow the same

rules as crossmodal interactions involving representations of external space (auditory-visual).

3.2 Introduction

Ventriloquism is the effect that occurs when a puppet’s moving mouth causes an audience

to misperceive the sounds they hear as having originated in the puppet, rather than in their

true source, the puppeteer’s mouth. Although this illusion may appear to represent an error

on behalf of the perceptual system, it has been shown (Kording et al., 2007; Wozny and

Shams, 2011a; Wozny et al., 2010) that it is an epiphenomenon of a Bayes optimal spatial

perception.

Recently, we have demonstrated that the same Bayesian inference model (Bayesian causal

inference) that has accounted for observers’ auditory-visual spatial (as well as temporal)

perception, can also explain the Rubber-hand illusion which involves perception of body

ownership and body part location (Samad et al., 2015). However, this previous study probed

the perception of the hand in allocentric spatial coordinates. In other words, while the spatial

inference task involved location of a body part, it was still in an allocentric frame of reference.
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Here, we aimed to investigate the rules governing spatial perception in a different reference

frame: that of the surface of the body, or somatotopic coordinates.

Several previous studies have investigated visuotactile interactions both neurally and

behaviorally. A series of single-cell recording experiments by Michael Graziano and others

(Graziano and Botvinick, 2002; Graziano et al., 2000; Graziano and Gross, 1998) has shown

that across a network of brain regions, including the ventral premotor cortex, the putamen

and the intraparietal sulcus region, there exist populations of bimodal neurons that respond

to both visual and tactile stimuli; the response of these neurons is facilitated when the

stimuli are spatially and temporally congruent (Avillac et al., 2007). Additionally, it has

been reported that the visual receptive fields of these neurons dynamically remap so as

to stay spatially coincident with the tactile receptive fields (Graziano et al., 1994). These

intriguing results suggest that the computations involved ought to include a step to infer

whether or not a tactile and a visual stimulus came from the same location along the surface

of the body. A parallel can be drawn between these findings and those of Meredith and

Stein reporting similar audio-visual facilitatory activity in the superior colliculus, and the

postulation of these circuits as the neural mechanism underlying auditory-visual ventriloquist

illusion (Meredith and Stein, 1986).

Behavioral studies have also reported a variety of visuotactile interactions. For example,

viewing one’s hand reduces tactile detection reaction times (Tipper et al., 1998) and improves

tactile two-point discrimination despite its task-irrelevance (Kennett et al., 2001).

In light of these findings, it is not unlikely that visual and tactile modalities also interact

in perception of space along the surface of the body. Therefore, we asked whether something

akin to the ventriloquist illusion operates in somatotopic coordinates. In particular, our
92



research question was: do visual and somatotopic representations interact in spatial percep-

tion? We hypothesized that the less precise tactile representations will be shifted towards the

more precise visual representations, and that as in auditory-visual interactions, this interac-

tion will primarily occur for intermediate disparities (when a common cause is perceived),

and not when the disparity is too large to allow the perception of a common cause (Kording

et al., 2007; Wozny and Shams, 2011a; Wozny et al., 2010; Samad et al., 2015). This pattern

of results would be consistent with Bayesian causal inference that has previously been shown

to account for audiovisual ventriloquism very well (Kording et al., 2007; Wozny and Shams,

2011a; Wozny et al., 2010). We predicted that Bayesian Causal Inference would provide a

unifying account of multisensory integration, whether it involves representations encoded in

an external reference frame or somatotopic coordinates. Alternatively, it is possible that

perception of one’s own body is special: it may involve hard-wired representations, not be

as prone to crossmodal interactions, or such interactions may be governed by different rules.

In that case, we would not observe interactions between tactile and visual modalities akin to

the ventriloquist illusion, and the Bayesian Causal Inference would not be able to account

for the data.

3.3 Method

Participants

Twenty-one UCLA psychology undergraduate students (16 females; average age 20.1,

ages ranging 19-22) participated in the experiment and received course credit for their par-
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ticipation. All participants were screened to ensure normal or corrected to normal vision,

and consented using procedures that were approved by the Institutional Review Board at

UCLA.

Materials

Our experimental setup consisted of three components: a tactor array for tactile stimuli,

a projector with mirror mount for visual stimuli, and a computer running Matlab with

PsychToolBox for control of the stimuli and recording responses (see Figure 3.1A).

The projector was mounted on a shelf directly above the subject, with a mirror angled

at 45 degrees so as to reflect the display onto the subject’s forearm below.

The tactor array consisted of 5 tactors (Pico Vibe 9mm Vibration Motor - 25mm Type;

Model Number: 307-103) embedded into a soft foam material, spaced apart by 41.1mm,

a distance that subtended 12◦ of visual angle – thus spanning the positions -24◦, -12◦, 0◦,

12◦, 24◦ – and driven by a custom built controller circuit that used an Arduino (Arduino

SA, Italy) to interface with Matlab. The tactor array was then affixed to a piece of acrylic

measuring 30.5 x 10 cm2, and which was itself attached by a hinge joint to a vertical mounted

piece of wood. Each subject placed their arm under the tactor array, with their wrist upon a

thick foam layer in order to flatten the upper surface of the arm as much as possible. Then,

the foam array was lowered onto the forearm and pressed down using a 750ml filled bottle

weighing approximately 2kg. This was done so as to ensure that half of the surface of the

forearm was covered by the foam array, and thus would feel the tactor stimulation, and the

other half would be exposed to the projector’s display, and thus would allow presentation
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Figure 3.1: A. Experimental Setup. Diagram depicting the experimental setup used to
present the stimuli, including a tactor array that is driven by a microcontroller (Arduino)
for tactile stimulus delivery, and a projector for visual stimulus delivery, and a computer for
control of both. B. Trial Design. This shows the sequence for a given trial: A fixation
cross is presented on the screen for a variable interstimulus interval, after which stimuli
are presented for 60ms. After a 500ms interval, the fixation cross disappears and a cursor
appears for subjects to make their responses with.

of visual stimuli. This enabled the bisensory stimuli to be as proximate to each other as

possible while allowing for both stimuli to be presented directly on the surface of the arm.

Finally, Gaussian noise audio was played at 70 dB simultaneously with stimuli on a pair

of headphones worn by the subject in order to eliminate the audibility of the vibration of

the tactors. The volume of this noise mask was determined in our pilot experiments such

that the location of the tactile stimuli could not be determined based on the tactor noise.

Subjects’ had their head position fixed by means of a chin-rest that was placed 195mm away

from the tactor array. Subjects were allowed to adjust the height of the chair and/or the

chin-rest to achieve a comfortable posture.
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Procedure

13 repetitions of all 35 stimulus conditions (5 x 5 = 25 possible bisensory presentations

and 5 + 5 = 10 possible unisensory presentations) were presented in a pseudorandom order.

Stimuli were presented for a duration of 60ms and intertrial intervals were sampled from

the normal distribution: N (µ = 1.5s, σ = 0.25s). Subjects were given a 1-2 minute break

every 150 trials.

The subjects’ task was to localize the visual and tactile stimuli on each trial using a mouse

cursor that was restricted to movement in the azimuth and bounded to the region of stimulus

appearance spanning 93.4 degrees. The order of these localizations was counterbalanced

across subjects. The color of the mouse cursor corresponded to the modality to be localized,

blue to indicate a visual localization and red to indicate a tactile localization. The mouse

cursor appeared 500 ms after stimulus offset and they were instructed to move the mouse

rapidly to the position they perceived the stimulus to have been presented at and click with

the left mouse button to indicate their response (see Figure 3.1B).

A white fixation cross was presented at a position 30 degrees above the middle tac-

tor position. To ensure fixation, the observers were asked to also perform a fixation task

throughout the experiment. On 10% of trials, the fixation cross changed color from white

to red simultaneously with stimulus appearance and for 500 ms longer. Participants were

instructed to press the middle mouse button whenever they detected the change of color of

the plus sign. The duration of the presentation of the colored cross was adjusted during

piloting such that it was only detectable if the observer directly looked it and not if they

gazed away from the fixation point. The fixation cross disappeared during responding and
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subjects were only asked to fixate during stimulus presentation and between trials.

Modeling

We used the Bayesian Causal Inference model as described in (Wozny et al., 2010) to

fit the data from each individual observer. The perceptual decision-making strategy (model

averaging, probability matching, model selection) was also fitted to the data of each observer.

3.4 Results

The data from the fixation task showed that observers detected the change of color 96.2%

of the time on average and therefore fixated on the fixation point throughout the experiment.

We first analyzed unisensory trials by computing the standard deviation of responses

for each modality at each of the five spatial positions. For tactile unisensory trials, the

average standard deviation across subjects and positions, with its 95% confidence interval was

6.18◦± 0.47. In contrast, for visual unisensory trials, it was 2.83◦± 0.46. Thus, participants’

visual responses were more than twice as precise as their tactile responses.

To investigate crossmodal interactions, from incongruent bisensory trials, we computed

the bias in each modality as follows:

∆V = V̂ − V
T − V

, ∆T = T̂ − T
V − T

where ∆V and ∆T denote the bias in visual and tactile responses, respectively and where V̂

and T̂ denote the visual and the tactile responses, respectively, and where V and T denote

the true visual and tactile stimulus locations, respectively.
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Figure 3.2: Visual-Tactile Interactions. A. Average tactile bias and visual bias as a
function of spatial disparity between the stimuli across all participants. Error bars represent
S.E.M. B. Response distributions and Model Fits for a Representative Observer. Each panel
represents data and model fits for one of the stimulus conditions. The first row and the first
column correspond to unisensory tactile and unisensory visual conditions, respectively. The
remaining panels correspond to bisensory conditions. In each panel, the horizontal axis
represents the spatial position, and the vertical axis denotes response probability. Shaded
areas represent distribution of responses for each modality. Thick solid and dashed lines
represent model fits for each modality. Tick marks at the top of every inset represent true
stimulus locations. Resp, response.
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Average bias across all disparities and all participants was 51.3% for touch and 5.5% for

vision. Figure 3.2A shows the average bias for each modality as a function of spatial disparity

between the two modalities. As can be seen the visual bias is small for all disparities,

which is not surprising given the much lower reliability in the visual modality. The tactile

bias is large for small disparities and decreases as a function of disparity (regression slope,

βdisparity = −0.89, t418 = −5.83, p < 10−8). This is consistent with previous findings from

audiovisual ventriloquist studies (Kording et al., 2007).

Figure 3.2B shows the response distributions of a representative participant for all stim-

ulus conditions and the model fits. As can be seen in the unisensory tactile conditions (first

row), the responses are shifted towards the center relative to the veridical position of the

stimulus.

A linear regression analysis using data from all subjects confirmed a consistent bias in

the tactile perception towards the center (regression slope, βtact = −0.3, t1363 = −22.3,

p < 10−94), indicating that positions in the periphery were shifted towards the center by as

much as 30%.

The Bayesian Causal Inference accounted for the data very well. This can be seen in Fig.

3.2B for a representative subject. The thick solid lines indicate that the distributions of the

model predictions are in very close concordance with this subject’s actual response distri-

bution (depicted by the shaded areas). The average generalized goodness of fit coefficient

across all observers was R2 = 0.812 with 95% CI [0.798, 0.825] (Nagelkerke, 1991).
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3.5 Discussion

We report evidence for a visual-tactile ventriloquist illusion, in which visual and tactile

stimuli spatially interact along the surface of the body. In summary, when subjects were

presented with visual and tactile stimuli along their forearm, their localization judgments of

the tactile stimuli were significantly biased towards the visual stimulus location. Moreover,

this integration was consistent with the rules of optimal Bayesian statistical inference, as

the noisier tactile signal was biased towards the more reliable visual signal, and crossmodal

interactions occurred according to an inference about the causal structure of the stimuli.

As both sensory modalities are represented in a spatially topographic map, the presence

of these interactions makes sense and is consistent with similar interactions that have been

observed between visual and auditory modalities (Wallace et al., 2004; Kording et al., 2007;

Wozny and Shams, 2011a). This is especially true considering the evidence from single

cell recordings and behavioral studies (Graziano et al., 2000; Graziano and Botvinick, 2002;

Graziano and Gross, 1998; Avillac et al., 2007; Ladavas, 2002) indicating interactions between

the two modalities at the single-unit level of representation. In addition, recent studies

suggest that the interaction between the visual and somatosensory modalities may happen

at a very early processing level (Mahoney et al., 2015; Ley et al., 2015; Sieben et al., 2013).

To our knowledge, this is the first demonstration of a spatial biasing of a tactile repre-

sentation by a visual representation along the surface of the skin. The results of unisensory

tactile trials in the present study also showed a spatial compression in perception of stimuli.

This finding is consistent with several previous findings (Green, 1982), some dating back

to at least 1834, with Weber’s observation that distances along the surface of the skin are
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underestimated on regions that have poorer acuity – a phenomenon he referred to as spatial

compression (Ross and Murray, 1978).

At any given moment, the nervous system is typically busy processing multiple sensory

stimuli, and the perceptual system has to determine a) which of these signals are caused

by the same object/event–a problem referred to as “the causal inference problem”, and

b) for those sensory signals that are inferred to have the same cause, how to integrate

them in order to achieve the best estimate of objects/events in the environment–a problem

referred to as “the integration problem”. The Bayesian Causal Inference model is a normative

model derived from fundamental statistical principles that solves both of these problems in

a coherent and unified fashion. The inference about the causal structure (common cause vs.

independent causes) is based on the consistency between the signals as well as the a priori

knowledge about the world (i.e., the prior tendency or bias for perceiving a common cause).

The inference involved in the integration process similarly depends on the sensory signals

(their reliabilities), and the prior knowledge about their occurrence. Another noteworthy

feature of this model is its parsimony. It explains both causal inference and integration

processes, and accounts quantitatively for individual observers’ data remarkably well with

minimal model complexity. The model has only four free parameters and accounts for 780

data points.

The Causal Inference model has previously been quantitatively compared with other

models of multisensory perception and has been shown to be substantially superior at ac-

counting for behavioral data (Kording et al., 2007). Traditional models assume integration

– sometimes also called forced fusion – and are therefore, incapable of accounting for par-

tial integration and segregation phenomena (Beierholm et al., 2009a; Shams and Beierholm,
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2011).

Finally, the fact that this model has been shown to account for a wide variety of mul-

tisensory phenomena, ranging in tasks and sensory modality combinations (Samad et al.,

2015; Beierholm et al., 2009b; Wozny et al., 2008) strongly suggests that it is a computation

that evolution has adopted in solving a variety of perceptual problems, thus, in widespread

use across brain regions. It provides a normative and unifying account for how nervous

systems combine information from the various modalities and coordinate systems, both in

the external world and on the surface of the body.

In conclusion, the data reported here show that ventriloquist illusion is not limited to

interaction of modalities in external space, and extends also to somatotopic representations of

the space. And more importantly, the results provide yet another demonstration of Bayesian

causal inference in multisensory perception, where the causal structure and the estimate

of the stimuli are inferred optimally from available sensory inputs and prior knowledge.

This demonstrates that the integration of visual and tactile information that is encoded in

somatotopic coordinates is governed by the same rules of statistical inference that many

other perceptual processes have been shown to obey (Samad et al., 2015; Beierholm et al.,

2009b; Wozny et al., 2008).
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Chapter 4

Recalibrating the Body: Visuotactile

Ventriloquism Aftereffect

4.1 Abstract

Visuotactile ventriloquism is a recently reported effect showing that somatotopic tactile

representations (namely, representation of location along the surface of one’s arm) can be bi-

ased by simultaneous presentation of a visual stimulus in a spatial localization task along the

surface of the skin. Here we investigated whether the exposure to discrepancy between tactile

and visual stimuli on the skin can induce lasting changes in the somatotopic representations

of space. We conducted an experiment investigating this question by asking participants to

perform a localization task that included unisensory and bisensory trials, before and after

exposure to spatially discrepant visuotactile stimuli. Subjects localized brief flashes of light

and brief vibrations that were presented along the surface of their forearms, and were pre-

sented either individually (unisensory conditions) or were presented simultaneously at the
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same location or different locations. We then compared the localization of tactile stimuli in

unisensory tactile conditions before and after the exposure to discrepant bisensory stimuli.

After exposure, subjects exhibited a shift in their tactile localizations in the direction of the

visual stimulus that was presented during the exposure phase. These results demonstrate

that the somatotopic spatial representations are capable of rapidly recalibrating after a very

brief exposure to visually discrepant stimuli.

4.2 Introduction

The nervous system is at all times playing a guessing game with the aim of identify-

ing which sensations should be integrated and which ought to be segregated. For example,

consider what happens when a sound and sight are concurrently processed by the brain.

If they originate from different sources, but the brain erroneously infers that they have a

common cause, this can lead to an illusion known as the ventriloquist illusion, wherein the

perceived location of the sound is captured by the location of the visual stimulus (Alais

and Burr, 2004). A similar phenomenon has been shown to occur between auditory and

tactile representations (Caclin et al., 2002). However, when some of the sensations involve

somatosensation, these guesses may also lead to aberrant bodily percepts, such as the rubber

hand illusion (Botvinick and Cohen, 1998; Armel and Ramachandran, 2003; Samad et al.,

2015). Moreover, we have previously shown that visual and tactile stimuli interact in so-

matotopic coordinates such that estimations of tactile stimulus location are biased towards

concurrently presented visual stimuli (Samad and Shams, 2016).

In the audiovisual ventriloquist illusion, prior work has uncovered evidence that there is
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an accompanying aftereffect that develops as a result of exposure to audiovisual stimulus

pairs (Lewald, 2002; Recanzone, 1998). In brief, this effect is interpreted as a recalibration

of the mapping between auditory and visual spatial representations. In a study that exam-

ined this, subjects were given an exposure phase where they were presented with audiovisual

stimulus pairs that always had a constant disparity between them for no longer than 10 min-

utes (Wozny and Shams, 2011b). Results from this study showed that subjects’ localizations

after this exposure were significantly biased in the direction of the visual stimulus that was

paired with the auditory stimulus during this exposure phase (Wozny and Shams, 2011b).

While this kind of spatial recalibration has been shown for auditory and visual spaces,

it is not yet clear whether the somatotopic space is similarly malleable. We designed an

experiment to test the hypothesis that visuotactile ventriloquism induces an aftereffect such

that prolonged exposure to spatially incongruent visuotactile stimuli results in a measurable

recalibration of tactile representations. Given that our previous study (Samad and Shams,

2016) identified a vigorous interaction between visual and tactile stimuli in the somatotopic

space, we hypothesized that an aftereffect would also be observable such that tactile repre-

sentations would be biased, dependent on the disparity between the visuotactile stimuli that

were presented during the exposure phase.
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4.3 Method

Participants

Thirty-seven individuals (23 female) with a mean age of 21.3 gave written consent to

participate for course credit. All participants had normal or corrected-to-normal vision. The

experimental methods were approved by the UCLA IRB. One participant was excluded from

the experiment for non-compliance with instructions. The remaining participants (N = 36)

were randomly assigned to two groups, VT recalibration (N = 18) and TV recalibration

(N = 18).

Stimuli and Apparatus

We used a the same setup that was described in Samad and Shams (2016). It comprised

three components: a tactor array that will be described further below, a ceiling mounted

projector that was redirected downward onto subjects’ forearms via a 45◦ angled mirror,

and the experimental computer that was running Matlab with PsychToolBox for stimulus

presentation.

The tactor array was composed of a soft foam material measuring 30.5 by 10 cm2, in

which five tactors (Pico Vibe 9 mm vibration motors – 25 mm type; model number 307-103;

Precision Microdrives, London, UK) were embedded, spaced apart 41.1 mm, a distance that

subtended 12◦ of visual angle. Thus the five locations were -24◦, -12◦, 0◦, 12◦, 24◦ with

respect to fixation. The tactors were driven by a custom-build controller circuit that used

an Arduino (Arduino, Salerno, Italy) to interface with Matlab. The foam block was itself

mounted on a piece of acrylic of the same dimensions that was fixed to the tabletop with
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the use of a hinge joint that allowed the block to be pressed onto subjects’ forearms. This

was aided by a 750 mL opaque bottle filled to a weight of ∼ 2 kg, that was used as a ensure

a complete contact of the tactors with the forearm. The visual stimulus was a white disk of

light subtending 1.5 degrees, presented by the projector at a location that was 30 degrees

below fixation, at one of five points coinciding with the positions of the tactors. Care was

taken to ensure that each participant placed their forearm into the setup such that half of the

forearm lengthwise was under the foam block, and would thus feel the vibrotactile stimuli,

and the other half would be exposed to the projector’s screen and would thus have the visual

stimuli displayed directly upon it. This enabled the bisensory stimuli to be as proximate to

one another while allowing for both to be presented directly on the surface of the arm (see

Figure 1A).

Additionally, Gaussian white noise at ∼ 70 dB was used to mask the audibility of the

tactors by being played on headphones worn by the subjects simultaneously with stimulus

presentation. The volume was determined in pilot experiments such that the location of the

tactile stimuli could not be determined on the basis of the tactor noise alone. Participants

had their head position fixed by means of a chin-rest that was placed 195 mm away from the

tactor array. Participants were allowed to adjust the height of the chair and/or the chinrest

to achieve a comfortable posture.

Procedure

The experiment consisted of three blocks: pre-test, exposure, and post-test. The to-

tal duration of the experiment was 2 hours, and all three blocks ran consecutively in the
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same session. During pre- and post-test blocks, subjects localized visual and tactile stim-

uli delivered to their arm in both unisensory and bisensory conditions that were randomly

interleaved. The post-test block contained some top-up exposure trials interleaved. During

the exposure block, subjects were exposed to visual-tactile stimulus pairs that were always

spatially incongruent and with a constant disparity between them (± 12 degrees) in the

hopes of inducing an aftereffect. In order to familiarize subjects with the task they were to

perform, we included 15 trials of practice before the pre-test and exposure blocks.

750 ± 350ms

35ms

until response

450ms

Mouse

Projector

Arduino

Computer

12o

A B

Figure 4.1: A. Pre- and Post-test Experimental Setup. Diagram depicting the ex-
perimental setup used to present the stimuli, including a tactor array that is driven by a
microcontroller (Arduino) for tactile stimulus delivery, and a projector for visual stimulus
delivery, and a computer for control of both. B. Trial Design. This shows the sequence
for a given trial: A fixation cross is presented on the screen for a variable interstimulus
interval, after which stimuli are presented for 35 ms. After a 450 ms interval, the fixation
cross disappears and a cursor appears for subjects to make their responses with.

The pre-test block consisted of 420 trials and took about 35 minutes to complete. Every

possible pairing of visual-tactile positions was repeated 12 times in a pseudorandomized

order (5 x 5 = 25 bisensory trial types), and we also interleaved 12 repetitions of each of the

unisensory stimulus positions (5 + 5 = 10 unisensory trial types). Subjects were to report
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the location of the stimuli presented, using a mouse cursor that spanned the same space

where the visual stimuli were presented. The color of the cursor indicated to the subject

which stimulus to respond to, blue for visual stimuli and red for tactile stimuli. The order

of appearance of these two cursors was counterbalanced across participants.

Each trial started with the presentation of a fixation cross 30 degrees above the middle

stimulus position, and was followed by the stimulus that was on the screen for 35 ms. The

fixation cross was taken off the screen and the cursor appeared at a random horizontal

location spanning the stimulus space to eliminate any biasing effects of a consistent starting

location 450 ms after the stimulus offsets. Subjects moved the cursor using a Bluetooth

wireless mouse and were instructed to “move the cursor as quickly and accurately as possible

to the position where you saw/felt the stimulus and click the left mouse button”.

The exposure block consisted of 40 trials and took approximately 10 minutes to complete.

On every trial, a train of 20 successive spatially incongruent stimulus pairs were presented

to subjects at the same location. A uniform distribution was used to select a random pair

between the 5th and the 15th pairs that would be presented with the visual stimulus 100%

brighter than on other pairs. Subjects were instructed to report having seen the brighter

visual stimulus by clicking the left mouse button. Upon a successful detection, the stimulus

pair changed position whilst maintaining the same spatial disparity between the visual and

the tactile stimuli, and the same train of stimuli was presented, with a newly selected random

pair to be presented with the brighter visual stimulus, until the next successful detection.

Failures to detect the brighter visual stimuli caused the train of stimulus pairs to repeat

until a brighter stimulus was detected.

Finally, subjects performed 420 trials of spatial localization with 90 top-up trials in-
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Figure 4.2: During pre- and post-test blocks, subjects performed a visuotactile localization
task. During the exposure block, subjects had to passively attend to visuotactile pairs
that were spatially discrepant such that the visual stimulus was either 12 degrees displaced
towards the elbow (VT-group) or towards the wrist (TV-group) with respect to the tactile
stimulus.

terleaved during the post-exposure block. The localization trials were identical to those

performed in the pre-exposure block and the top-up trials were identical to those performed

in the exposure block. The top-up trials were performed after every 40 localization trials

had been completed. The post-test block took a total of 45 minutes to complete.

On 10% of all trials, the fixation cross changed color to red simultaneously with stimulus

presentation and subjects were asked to report when this change occurred by clicking the

right mouse button, which advanced them to the next trial. This was done to ensure that

subjects were fixating during stimulus presentation.

4.4 Results

We first analyzed the effects of exposure on unimodal tactile localizations, by computing

the difference between the tactile localization on tactile-only trials in the pre-exposure and
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the post-exposure blocks. These differences were coded so that they are positive when the

tactile localization is shifted towards the elbow, which is where the visual stimulus would

have been presented for the VT group. Thus, we expect a positive shift for the VT group

and a negative shift for the TV group. These results are shown in Figure 3.

We first analyzed the difference between tactile localizations on tactile-only trials from

pre-test to post-test using an ANOVA with repeated measures with between-subjects factor

“group” (2 levels: VT-group and TV-group) and within-subjects factor “position” (5 levels:

-24, -12, 0, 12, 24). This analysis revealed a significant effect of “group”, F (1, 34) = 7.41, p =

.01, BF = 4.24, and a trend for “position”, F (4, 136) = 2.36, p = .057, BF = .64. A Bayes

Factor between 0.33 and 3 indicates that the evidence is inconclusive as to whether the null

hypothesis or the alternative hypothesis is better supported. Therefore, in the absence of

a strong effect of stimulus position, we computed a one-tailed independent samples t-test

on the change in unimodal tactile localization from pre-test to post-test averaged across

positions, t(34) = 2.72, p = .005,Cohen’s d = 0.91 (see Figure 3). This analysis therefore

shows that there was a statistically significant effect on the shift in the unisensory tactile

localizations from pre-test to post-test, such that subjects that were exposed to disparities

in opposite directions exhibited shifts in correspondingly opposite directions.
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Figure 4.3: Unisensory Tactile Recalibration Results: Average change in localization
of unisensory tactile stimuli from pre-test to post-test, collapsed across stimulus position, for
both groups of subjects. A positive shift indicates a shift towards the elbow, which is in the
direction where the visual stimulus was presented with respect to the tactile stimulus during
the exposure phase for the VT group. ** indicates statistical significance at p < 0.01.

4.5 Discussion

Results demonstrate that subjects who were briefly exposed to synchronous but spatially

incongruent visual-tactile pairs of stimuli exhibited a subsequent bias in their localizations

of tactile stimuli presented in isolation, which corresponded to the direction of the spatial

incongruence that they were exposed to. This phenomenon can be described as a visual-

tactile ventriloqusit aftereffect and closely parallels the audiovisual ventriloquism aftereffect

(Alais and Burr, 2004; Wozny and Shams, 2011b; Lewald, 2002; Recanzone, 1998). This

demonstrates the generality of the rules of integration and plasticity throughout the nervous
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system, and that the rapid recalibration of sensory maps to each other is not restricted to

exteroceptive modalities but is also an actively utilized process in the mapping between the

somatotopic and visual representational spaces.

It is notable when comparing the magnitude of this effect with what has been reported

in the audiovisual modalities that the latter is generally a larger effect (Wozny and Shams,

2011b). We believe that several methodological differences may be behind the weaker effect

observed here. First, the frequency of breaks that we gave our subjects differed from that

of Wozny and Shams (2011b) due to the need to allow our participants to rest their arms

during the two-hour long experimental sessions. The increased frequency of these breaks may

have diluted the effect slightly by providing subjects with episodes without any visuotactile

spatial incongruence.

In conclusion, we have demonstrated that visual-somatotopic spatial recalibration occurs

after very brief exposure to spatially discrepant stimuli and therefore that the somatotopic

space is more malleable than was previously thought.
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Chapter 5

The Bayesian Body Hypothesis

5.1 Summary of Experimental Results

In the preceding chapters, I have described three experimental investigations into body-

related representations and posited computational frameworks to account for them. The

general guiding principle throughout all of this has always been to arrive at a clearer un-

derstanding of how the brain solves the problem of identifying which object is its own body,

and which objects are not.

In chapter 2, I described an experiment that revealed several important facts about the

rubber hand illusion. First, I showed that it is possible to induce the illusion without the

requirement of tactile stroking. This was a surprising finding that went against the conven-

tional wisdom in the field and shed new light on the nevertheless well-studied phenomenon.

More importantly, however, was the fact that this novel effect was predicted by a form of the

Bayesian causal inference model (Kording et al., 2007; Beierholm et al., 2009b; Wozny et al.,

2010) that was extended to operate over both space and time in order to simulate the effect
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of temporally synchronized touches. The space upon which this model was constructed is

that which arises from the integration of vision with proprioception, a space most adequately

described by the notion of peripersonal space. The temporal dimension is characterized by

the timing of the felt and seen stroking of both real and rubber hands.

In chapter 3, I described an experiment that was designed to investigate the space that

lines the surface of the body, and as such can be considered an orthogonal space to that which

I concerned myself with in chapter 2. The experiment was thus concerned with the way in

which somatotopically encoded visual and tactile representations interact, and specifically

whether the same principles of statistical inference could be successfully applied. Indeed, we

found that a version of the model that was designed to operate over this somatotopic space

was capable of adequately accounting for our collected data.

Finally, in chapter 4 I described an experiment that further investigated the malleability

of the somatotopic space using an adaptation paradigm aimed at the recalibration of the

visual-tactile mapping. This was achieved by exposing subjects to spatially discrepant but

temporally synchronous visual-tactile stimulus pairs for about 10 minutes and assessing the

resultant change in their tactile localization bias. Therefore, this experiment relied on the

same somatotopic space model that was developed for the experiment reported in chapter 3.

Thus, across the three preceding chapters, I have made use of three variants of the

Bayesian causal inference model, which operate within the two spatial fields of relevance

to body representations, namely the peripersonal space and the somatotopic space. This

current chapter concerns itself with the way in which to reconcile these two spaces, which

under some considerations can be seen to be orthogonal to one another, and to construct a

generalized causal inference model that performs inferences across both spaces.
115



5.2 Body Representations: Fixed or Dynamic?

The results described above can be synthesized into the following general statement

regarding the perceptual system’s representation of the body: it is not immutable and fixed

but is rather a dynamic estimate produced by the constant sampling of the bodily senses and

their calibration with the external senses. This idea challenges our natural intuitions, which

posit that the perception of our own bodies ought to be hardwired and absolute, immune

to the trickeries that the rest of the perceptual system is so demonstrably susceptible to.

Illustrative of this intuitive difficulty are accounts such as that espoused by Glenn Carruthers

(2008), which posits a distinction between online and offline body representations, with the

former being comprised of the sorts of things that are updated with sensory information about

how the body is moving, and the latter being a relatively fixed and hardwired representation

that is immune to the effects of sensory stimulation. Glenn is very careful to distinguish

his account from the older body image/body schema dichotomy (Head and Holmes, 1911),

claiming that the offline representations are unlike the body schema in that they do not

contain any information about the current position of the body, but rather underlie the

conscious sense of embodiment. In support for this idea is the fact that patients who have

had limbs amputated continue to feel the phantom presence of the missing limb, a condition

known as phantom limb syndrome, as though an offline representation has failed to be

adequately updated (Ramachandran et al., 1995).

Thus, it seems that researchers have for a while now been cognizant of the plasticity

of some body representations. But indeed, even in patients with phantom limb syndrome,

merely using a mirror to reflect the image of the intact arm so that it appears to occupy
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the position that the amputated arm would have is enough to produce a stark improvement

in the diagnosis (Ramachandran et al., 1995). So, despite the influence of an offline semi-

permanent representation of the body, it seems that even they are not immune to the effects

of learning. However, it is important to note that there are some constraints on this rapid

re-wiring. While one of the early papers on the rubber hand illusion seemed to show evidence

for the ability to embody any object regardless of their identification as body parts (Armel

and Ramachandran, 2003), accumulating evidence challenges this initial finding and suggests

instead a requirement that the object to be embodied be a semantically congruent body part

(Tsakiris and Haggard, 2005; Tsakiris, 2010; Haans et al., 2008).

The rubber hand illusion is perhaps the strongest and most salient phenomenological

effect demonstrating the malleability of the body representation. It provides an illustra-

tive contrast with the phenomenology of the phantom limb pain syndrome, both of which

are nevertheless often discussed under the same light. The contrast can be highlighted by

recognition of the fact that although they are both demonstrations of anomalous body rep-

resentation, the error in the case of the RHI is substitutive, whereas in the case of phantom

limb syndrome it is residual. In other words, the arm that is owned in the RHI is substituted

for the veridical arm, whereas the limb that is owned in the case of the phantom limb syn-

drome is the shadow of the previously attached limb. In both cases, we can see the influence

of a top-down constraint on the process of body representation, in that the identity of the

body part is used to constrain the incoming bottom-up sensations – in the RHI to enable

the substitution, and in the phantom limb to override the sensory evidence for the lacking

limb. Thus, it is clear that there is an interplay between the two processes and that this

may be at the heart of the vigorous theorizing by researchers regarding how many body
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representations there are and what is their nature. So, on the one hand it is clear that the

body representation is modifiable and can be tricked by sensory illusion paradigms, but at

the same time there is a strong influence of prior knowledge that serves to bound the space

of possible body representations.

That perception of the external world is an inherently probabilistic process is a fairly

uncontroversial claim, and recent advances in computer vision and vision science have in fact

relied on formulating and implementing highly sophisticated statistical inference methods to

compute what is most likely from amongst the full space of possible scenes generating the

current sensations. When the conversation turns to the perception of our own bodies, it has

not yet been unequivocally demonstrated that this too relies on an inference process. The

work described in this dissertation has shown that the Bayesian model can account for these

phenomena well, and this can be taken as yet another sign that there is nothing privileged

about these bodily representations. Rather, they too are the nervous system’s best guess

as to the latent structure that produces incoming sensations. Insomuch as a sensation is

a sensation, it will have a characteristic amount of noise determining its reliability, and

the nervous system is highly adept at utilizing this in the process of making its estimates.

Whether the sensation arrives from mechanoreceptors in the skin, or whether it arrives

from photoreceptors in the retina, in both cases it carries information that can be used to

reconstruct its emitting object in the reality beyond the nervous system’s epistemic horizon.

What we are in pursuit of here is a way to formulate the inference process so that it combines

the top-down constraints we have been discussing with the bottom-up reliability-based cue

combination under the same overarching statistical framework.

A caveat, which will be discussed in further detail in Section 5.3 below, is worth men-
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tioning: a crucial difference between the signals arriving from mechanoreceptors and those

arriving from photoreceptors regards the location of origin of the event that triggered them.

In the case of a photoreceptor, the originating body may be located anywhere, at any dis-

tance away from the nervous system in the external world. A mechanoreceptor, on the other

hand, provides information regarding events that occur on the body itself. This point will

come to represent a crucial component in the model of body ownership being proposed herein

as it will be the differentiating element that enables the system to invoke specialized systems

that match body templates to specific objects.

5.3 The Bayesian Body Hypothesis

At this junction, I would like to argue for a synthesis from the results and conclusions

scattered throughout the various experiments documented within this dissertation. In what

follows, I will attempt to construct a synthetic account of body ownership based on the logic

of Bayesian causal inference and will consider two alternative approaches for doing so. In

the interest of clarity, I will hereafter refer to this effort as the Bayesian body hypothesis.

Let us begin by re-examining the model of the rubber hand illusion that was provided

in Chapter 2. In that model, we made several simplifying assumptions, which we will now

spell out more carefully in an extended form of that model. In particular, we had assumed

that a previous calculation would have already recognized the foreign object as a body part,

namely an arm, that matches the internal template for the body part. This assumption

was necessary so that the azimuthal disparity between the visual and proprioceptive signals

could be directly assessed. If the visual object were not categorized as a body part to
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be embodied, there would be no sense in the calculation of disparity between it and the

proprioceptive spatial location. We also assumed that the touch applied to the rubber hand

was congruent with the touch applied to the real hand in somatotopic coordinates. This

too was a necessary simplifying assumption as the model was restricted to only utilizing

the temporal components of the touches, and could only do so if it was established that

their spatial components were congruent. Therefore, to allow for an adequate formalization

of the model of the rubber hand illusion, we chose to disregard these potential sources of

incongruence because in the experiments that were conducted to test the model, care was

taken to experimentally preclude such incongruencies.

Figure 5.1 shows the extended graphical model that incorporates these additional compu-

tations that were previously disregarded. Thus, we have supplemented the original graphical

model from Figure 2.1 with three additional signals. In the original model, we had a signal

for Vazim, encoding for spatial location along azimuth, and have added to that here a signal

for Vsom, encoding for spatial location along somatotopic coordinates, as well as temporal

information regarding the timing of the touches. We had previously modeled the tactile

signal, Tsom, as conveying only temporal information regarding the timing of the touches,

but have here expanded it to also encode the spatial location along somatotopic coordinates.

Note that Vazim and Pazim can also be expanded to contain temporal information if the hands

are moving, as would be possible in a virtual hand illusion setup. Finally, we also have a

signal regarding the hand similarity metric that was discussed above. Thus, this framework

models ownership as arising when an inference of common cause is made for all these five

signals, four of which are spatiotemporal vectors and one of which is categorical.

However, if we begin to delve a little deeper into the inner workings of the model, as
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would be necessary for a full formalization of the process shown in the graphical model in

Figure 5.1, we will observe some potential difficulties, which my attempt to address will lead

to the second possible formulation of the Bayesian body hypothesis, as will be discussed

at length below. First, we will observe that the four spatiotemporal signals are actually

represented across two spaces, the peripersonal and the somatotopic. This would seem to

imply that somatotopic coordinates can be extracted independently from the peripersonal

space. In particular, this arrangement would require that the visual system be able to observe

a hand-like object be touched, and then to convert that into its corresponding representation

along somatotopic space, so that the comparison with the actual felt touch can proceed in

determining the congruence of these signals, or lack thereof. Is there any evidence that the

visual system computes these mappings for every hand it sees getting touched anywhere in its

field of view? Or would we find it more parsimonious to postulate this special retinotopic-to-

somatotopic transformation only for regions of visual space that are plausible candidates for

where my hand may be located? This is certainly not an uncontroversial question, although

my scales tip slightly more towards to the latter notion, the full implications of which will

be developed in the second possible formulation of the Bayesian body hypothesis below.

In fact, there is substantial evidence for the existence of a population of neurons (see

Section 1.5) capable of rapidly and dynamically remapping their visual receptive fields as

the arm moves around in space. In modern parlance, these neurons are the foundation of the

system called peripersonal space, whose existence implies that the parts of the visual field

that correspond to the somatotopic coordinates depend on this remapping that is always

occurring, and whose role is to center itself upon the location of the body part (Graziano

et al., 2000). This seems to suggest that the two processes of integration here (the visuo-
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proprioceptive and visuo-tactile) are actually two stages rather than one, and that the visuo-

tactile depends upon the results of the visuo-proprioceptive. Therefore, as an alternative to

the single process causal inference model described above, a reformulation guided by this

dual-process approach will be advanced in what follows.

Object Body

Cown

Tsom

Body

PazimVsomVazim TsomPazimVsomVazimForm Form

Figure 5.1: Extended Rubber Hand Illusion Model Extended version of the graphical
model for the Bayesian causal inference model of the rubber hand illusion that was utilized
in Chapter 2. Yellow ovals indicate visual signals providing information regarding spatial
location of the arm in azimuth, Vazim, and spatial location of the stroking in somatotopic
coordinates, Vsom. Orange circles indicate somatosensory signals providing information re-
garding the spatial location of the arm in azimuth, Pazim, and spatial location of the stroking
in somatotopic coordinates, Tsom. The gray circle indicates visual form information of the
object to be embodied, and specifically provides information regarding its similarity with
the template for the body part of relevance. The blue circles denote the possible sources of
the signals, namely a body part or a foreign object. And finally, the black circle denotes a
binary variable relating to the number of causes that generated the signals, which if inferred
to be equal to 1, indicates a feeling of ownership over the visual object.

Before we delve into that detailed proposal, however, and in an attempt to draw inspira-

tion from a highly tangential source, let us remind ourselves of the quote that we began this

dissertation with, and which was first stated by the most noble of those who have pondered

the mysteries of the mind:

“The foot feels the foot when it feels the ground.” — Buddha
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An innocently sounding aphorism that at first glance affords little insight and conveys

something seemingly trivial, reveals itself to contain tremendous profundity upon closer

examination. Much of the spirit of the argument that I will make in what follows will be

inspired by that trite saying of the Buddha’s. But, before I move on, let us consider a more

recent statement that conveys much of the same spirit:

“When our hand touches an object in our environment, we know that the object and our

hand are at the same location” — Smeets et al. (2006)

The guiding principle that underlies the present modeling endeavor posits that body

ownership is the result of a probabilistic process that operates on the interplay between

exteroceptive and interoceptive sensations, namely when visual and/or auditory representa-

tions are to be integrated with somatosensory and proprioceptive representations. Causal

inference, thus, operates on the sensations in order to attribute them to their proper causes

both in the body and in the environment. The visual object that the nervous system decides

to integrate with the somatosensory signals can only therefore be one of two objects: either

it is a part of my own body, or it is the external object that touched me. Thus, the lesson we

can learn from the literature we have surveyed and from the insightful quotes above is that

rather than attempting to force two processes into one and the same causal inference model,

as the rubber hand illusion model from Chapter 2 does, we can expand the scope of the

framework by analyzing these two inferences separately. In other words, it may well prove

advantageous to treat the situation as involving two processes of causal inference, seeing as

the event of a touch involves two components coming into contact.

In order to more thoroughly describe this hypothesis, let us take recourse to an example:
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Figure 5.2: Two Illustrative Vignettes: Scene 1) a fly passes over the visual field emitting
visual and auditory signals. Scene 2) the fly lands on the surface of the body causing a
somatosensory signal to be transduced in addition to the audiovisual ones.

a fruit fly passes across my visual field and lands on my forearm, triggering visual, auditory,

and tactile sensations (see Figure 5.2). Let us consider these two episodes in turn: first,

it flies across my visual field giving off photons and sound waves that my nervous system

detects and begins to process. At this point, audiovisual integration processes are presum-

ably computing the source most likely to have generated these exteroceptive sensations and

thereafter attributing them to it. As such, they provide information relating to events oc-

curring outside the body. Therefore, it is always possible to move the source of a given

signal progressively farther away while commensurately increasing its signal intensity and

the nervous system would be presented with presumably identical sensations (putting aside

for simplicity ancillary differences such manipulations are sure to introduce). Of course, the

redundancy in information arriving from two modalities will serve to constrain this space of

possible sources. Specifically, there are other structural constraints that this dual presenta-

tion to the nervous system helps to provide, such as spatial and temporal register, as well

as higher order correspondences such as the semantic dimensions of the signals.
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Let us contrast this purely audiovisual episode with the subsequent one that includes the

tactile sensation of the fly having landed on my forearm. In this case, the mere inclusion of a

somatosensory signal provides much stronger constraints on the space of possible sources for

the audiovisual signal, assuming of course that it was inferred to have had a common cause

with the tactile one. This would have to imply that the audiovisual object has arrived at

an interface with the body for it to have triggered the tactile signal. Thus, these integrated

percepts occupy a privileged status among the perceptual world, in that they give information

regarding this interface between our bodies and the environment – our skin. So, the nervous

system’s task is to parse the event of interest into two components: 1) the external event

that triggered the somatosensory signal, and 2) the body part that was the site of contact

with this external event. Therefore, with the exception of self-touches, every tactile signal

is an indication of physical contact between a foreign body and one’s own.

5.4 Modeling Considerations

Let us now return our attention to the formal architecture that would underlie a model

of the kind of expanded scope that is at present being argued for. A crucial question arises

immediately regarding the ordering of the two operations under consideration: does the brain

infer the location of the arm first, and then proceed to infer the location of the fly on the

surface of the arm, or vice versa? If we are to reconcile the two inferences that operate across

the peripersonal and the somatotopic spaces, then the answer to this question regarding the

order of inferences would seem to be a highly important one to address. I can think of three

possible schemes: 1) the two proceed simultaneously and mutually influence each other, 2)
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the referral – or transformation – of proprioception into external space coordinates calibrates

the retinotopic and somatotopic spaces to one another, or 3) the spatial coregistration of a

visuo-tactile stimulus helps to refer proprioception into external space coordinates.

The most intuitive route to adopt in approaching this problem is that which takes its

cue directly from the literature on peripersonal space that was reviewed in Section 1.5, and

therefore posits that the visuo-proprioceptive integration step is computed first, before any

referral of a visual touch to the resultant hand-centered coordinates may proceed. That said,

however, it remains possible – indeed, likely – that the subsequent stages may still exert the

kind of mutually constraining effects discussed under option 1 above. In other words, if the

visuo-tactile inference does not yield an integrated percept, this may in turn provide evidence

against the remapping of proprioceptive space to the location of the visual stimuli. The key

question to consider, however, is whether the visuo-tactile computation has any chance of

yielding an integrated percept in the absence of the peripersonal space, or rather if the latter

is a critical prerequisite that enables the retinotopic-to-somatotopic mapping, as discussed

above. Nevertheless, the separation of the model into this dual-process framework enables

the consideration of the two inferences spaces independently of one another, and makes some

predictions that allow for the arbitration between it and the single-process model described

above, which will be discussed in greater detail below.

Therefore, in order to more fully describe this dual process form, let us first consider

each of the inference spaces separately. Looking at the diagram shown in Figure 5.3, we can

begin to parse the overarching framework into its two constituent inferences: the inference

of the causal structure generating the external object, shown in the figure as the portion of

the diagram above the blue dotted line – and the inference of the causal structure generating
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the body part that has been touched, shown as the portion below the dotted line. Let us

begin with the former.

The yellow and orange ovals represent the visual and tactile sensations, respectively.

The blue ovals producing arrows directed towards the sensations depict the causes of those

sensations, which in this case, are in the external world. Thus, these two “leaves” occupying

the upper portion of the diagram in Figure 5.3 correspond to the scenarios where one or two

events external to the body gave rise to the visual and tactile sensations. And the black oval

labeled Cext is the binary variable determining which is the case, and whose latent state the

model attempts to infer. This inference is guided by the congruence of the visual and tactile

representations with each other, evaluated on the basis of proximity in somatotopic space

and time. As mentioned above, this requires a coordinate system transformation between

the retinotopic visual field and the somatotopic field for this comparison to be made. And

needless to say, the requirement to transform between spaces as just mentioned appears

to necessitate that visuo-proprioceptive integration have commenced already, in order to

extract this mapping function from its results. Let us now turn to that step.

Looking back at Figure 5.3, again we have sensations represented by orange and yellow

ovals and sources by blue ovals. Notably, however, the sensations are now the visual and

proprioceptive sensations coming from the body part itself. And, the sources are now lo-

cated within the body’s borders, as they are drawn in the lower portion of the diagram,

which is on the body’s side of the skin. Thus, the inference in this case is over the hidden

state of another binary variable, the black oval labeled Cbody, which determines whether

the visual and proprioceptive sensations share a common cause or separate causes. If the

former is inferred to be most likely, then the visual object must be the image that that body
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Figure 5.3: The Bayesian Body Hypothesis: Proposed graphical model for the general-
ization of Bayesian causal inference to inference regarding body ownership. The dashed line
indicates the interface across which a tactile stimulus (T ) signals contact, i.e. the skin. The
pair of visual stimuli that sit on either side of this dashed line, Vsom and Vazim indicate the
object and the body part that have been brought into contact, and encoded in somatotopic
and peripersonal spaces, respectively. Cext is a binary variable representing the causal struc-
ture for the visual and tactile representations from the external object and Cbody is a binary
variable representing the causal structure for the visual and proprioceptive representations
from the body part.
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part therefore casts upon the retina. Importantly, this step relies not just on spatial and

temporal proximity, but an additional requirement, namely that the visual representation

resemble the body part, a judgment conveyed by the variable labeled Form. Nevertheless,

we should hasten to add that the spatial comparison that is involved here also involves a

coordinate transform, this time operating in between the retinotopic and the proprioceptive

space. It is illuminating that we do not have a comparable -topy word for the topology

of the proprioceptive space; it highlights the paucity of data regarding its primary sensory

characteristics. This makes our computational approach all the more challenging, since we

do not know how to properly formulate the encoding of sensations in this space, let alone

determine the mapping function between it and the visual space.

If the process of visuo-proprioceptive integration step was under-constrained, or difficult

to solve for any reason, could the visuo-tactile integration step inform it? Specifically, if

the visual and tactile representations of signals from the external world were found to have

been more likely to share a common cause, this would be an additional source of information

aiding the anchoring of proprioception within that same exteroceptive space. Knowing that

a touch signifies contact between the body and a foreign object enables this “knowledge-

transfer”, if you will, between domains. How are we to characterize the mechanism by which

this information is utilized? We can choose to implement it as a additional signal to be

combined with the visual and proprioceptive signals coming from the body itself. Perhaps

the most direct way to do this would be to use the information gained by the other step to

update the spatial prior in the current step.

Finally, to turn to the notion of hand similarity and its effect on the visuo-proprioceptive

integration process, we can speculate on possible ways to instantiate probabilistic inference
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machinery to achieve the desired effect. This sort of calculation appears to be best captured

by the sorts of computer vision systems that have become very popular in recent years.

We can plausibly imagine that what is required is a classifier that is trained to recognize

the body part of relevance – say, a hand – and can also output a confidence metric on

its categorization. This enables the use of a continuous space upon which to perform the

inference of casual structure yielding the proprioceptive and visual signals. That is, they

need not only be congruent in their spatiotemporal profiles, but also need to be congruent on

this dimension of handness, quantified as the confidence in the “hand” category of a classifier

trained on a large enough database of hand models.

The question may arise as to the added value of this model framework as compared to

the model that was used to account for the rubber hand illusion in Chapter 2. We can

now offer a more direct answer, as follows: the causal inference that identifies the visually

presented hand as one’s own relies on two integrative steps, and there is evidence to suggest

that they can operate independently of one another, and thus that it does not suffice to

assume their mutual determination. In particular, the visuo-proprioceptive integration yields

the peripersonal space – a prioritized zone encoded in body-part centered coordinates, and

visuo-tactile integration happens on the basis of this space that is defined with respect to

the body part’s location. In the section that follows, we will discuss recent studies that seem

to show evidence for the ability of these two steps to be dissociated, and therefore the utility

of this modeling framework in accounting for this.

In this way, this model provides a quantitative innovation to the neurocognitive model

espoused by Tsakiris (2010) (see Figure 1.2). In that work, the proposed model goes

through several sequential stages in order to determine first the incorporeability of the ob-
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ject (the aforementioned handness similarity component of our visuo-proprioceptive inte-

gration process), then the postural congruency (the spatiotemporal component of the visuo-

proprioceptive integration process), and finally the referral of the felt touch to the new hand-

centered coordinates (the visuo-tactile integration process). This framework, thus, offers a

normative probability theoretic formulation for that influential neurocognitive model, and

moreover enables a much stronger falsifiability criterion in its ability to make quantitative

predictions that can be tested experimentally, a topic we will turn to next.

5.5 Testable Predictions

A model is only as useful as its testable predictions, and in fact becomes utterly unsci-

entific if it does not have that all-important characteristic of being falsifiable.

One prediction that seems to come out of this framework concerns the independence of

the dual inferences. More specifically, a situation may be possible where an object’s visual

and tactile signals are integrated into a coherent object on the surface of the body, but yet

where the complementary visual object is not integrated with proprioception. This could

perhaps be achieved in a virtual setting where a non-body object is touched by another

such that the subject feels the touch at the location of the non-body object, yet does not

feel ownership nor does proprioception recalibrate. We see hints of this in the three-arm

illusion (Guterstam et al., 2011), where subjects are able to see both real and rubber hands

while the illusion is being induced (see Figure 5.3). Results showed that subjects did indeed

feel ownership for all three arms, brought about by the synchronous visuo-tactile stroking,

but also revealed a curious dissociation in the pattern of responding to the questionnaire
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items. They reported less ownership than what is typically seen in the conventional rubber

hand illusion paradigm, but greater levels of referral of touch to the rubber hand. Using

this framework, we would explain the phenomenon as a case of inference of common cause

for the external object – the spatiotemporal profile of the paintbrush – while simultaneously

computing a much weaker inference of common cause for the body-object, since the real

hand is in plain sight and provides a much better match for integration with proprioception.

Figure 1. Illusion set-up.

Guterstam A, Petkova VI, Ehrsson HH (2011) The Illusion of Owning a Third Arm. PLoS ONE 6(2): e17208. 
doi:10.1371/journal.pone.0017208
http://journals.plos.org/plosone/article?id=info:doi/10.1371/journal.pone.0017208

Figure 5.4: Supernumerary Hand Illusion: Reproduced from (Guterstam et al., 2011)
depicting the experimental setup that was used to induce the supernumerary hand illusion.
Note that both the real and the rubber hands are visible to the subject while the stroking is
being applied and throughout the experiment.

Conversely, a situation should also be possible where visuo-proprioceptive integration
132



happens, thus shifting the perceived location of the hand, and yet visuo-tactile stimuli at

the hand’s new location are not deemed to have had a common cause. The asynchronous

stroking condition, and the difficulty associated with fully eliminating the illusion by it, may

be an indication of something like this taking place. In fact, the accumulation of recent

evidence pointing to the failure of proprioceptive drift and ownership reports to be causally

related (Rohde et al., 2011; Abdulkarim and Ehrsson, 2016) seems to provide evidence for

the independence of the visuo-proprioceptive and the visuo-tactile integration steps. To

speculate, we may claim that when subjects’ proprioception drifts, they are performing a

readout from the visuo-proprioceptive process, but the full-fledged ownership experience

requires integration across both steps to occur.

Finally, we have the recent magnetic touch illusion experiment where the experimental

setup was much the same as the conventional rubber hand illusion, with the modification

that the seen touch did not actually make physical contact with the rubber hand, but

rather floated a variable distance away from it (Guterstam et al., 2016). Subjects felt an

invisible force connecting the distant paintbrush with the rubber hand, as though a magnet

were transmitting the touch across the space, and this sensation correlated strongly with

their reports of ownership. Under the current framework, we would say that the visuo-

proprioceptive congruence – and hand similarity – provided a strong inference of common

cause for the body-part, which consequently remaps the peripersonal space to be centered

upon the rubber hand, and that visuo-tactile integration proceeds subsequently in this newly

calibrated space. This is indeed consistent with the account the authors provide for their

results, in that they also refer to the well known phenomenon of anchoring of tactile receptive

fields to the visual location of the arm, and that this can account for the visuo-tactile
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integration that occurs in peripersonal space (Graziano et al., 1994, 2000; Graziano and

Gross, 1998).

More directly, however, we can attempt to provide a specific experimental proposal whose

explicit purpose would be to determine whether the single or dual process approach is bet-

ter supported by the evidence. In particular, we can employ an experimental design that

independently manipulates the visuo-proprioceptive congruence and the visuo-tactile con-

gruence, with a dependent measure that records a subject’s localization of both their arms

as well as the location of the stroking on the surface of the arm. In this way, we may ob-

serve the dissociation between these measures that might indicate integration in one space

without the concomitant integration in the other, thus providing evidence in favor of the

dual process approach illustrated in Figure 5.3. In contrast, if we observe that the integra-

tion/segregation behavior of the subjects is perfectly correlated across the somatotopic and

proprioceptive localizations, then this would lend its support for the single process model,

as shown in Figure 5.1.

5.6 Conclusion

So to recap, the Bayesian body hypothesis states that the sense of body ownership arises

from the processes of statistical inference that help to make the best guess as to what objects

and events gave rise to the myriad sensations the nervous system receives, only insomuch

as the sensations include the somatosensory modality and a non-somatosensory object that

matches the template for the relevant body part. In particular, the inference process can

be described by an analysis of the two integrative steps that are its component parts, and
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which serve to mutually constrain one another. Namely, these two steps are as follows: 1)

retinotopic-to-somatotopic transformation that allows for the visuo-tactile integration in the

localization of objects touching the body, 2) retinotopic-to-peripersonal space transformation

that allows for localization of the body as it is touched by objects. It is clear that there is

much interplay between these two processes, in that each transformation serves to constrain

the other, since knowing where in the visual field the body part is aids in then knowing where

in the visual field various regions of the skin are, and vice versa. But it is also becoming

more and more clear that they can be manipulated independently of one another, as seen

recently by the demonstrations of illusions of visuo-proprioceptive integration that don’t also

manipulate ownership or vice versa. Therefore, the model presented in this chapter is a first

step towards the generalization of the spatiotemporal Bayesian causal inference model of

the rubber hand illusion that was presented in Chapter 2, such that it can more completely

describe its component inferences that had previously only been partially described. Future

experiments testing its predictions and utilizing this framework can therefore start to provide

greater clarity on the computational structure underlying the emergence of the subjective

sense of ownership for one’s body parts.
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Chapter 6

Summary and Conclusions

6.1 Summary of Main Findings

This dissertation has documented three experimental investigations into the mechanisms

of multisensory integration that relate to the perception of our own bodies. In the first of

these (Chapter 2), I have demonstrated that the rubber hand illusion falls under the umbrella

of multisensory phenomena that can be accounted for by the Bayesian causal inference model,

and moreover uncovered the first evidence of the elicitation of the illusion without the use

of brushstrokes, an effect that was predicted by the model. In the second investigation

(Chapter 3), I demonstrated that the mapping between the visual field and the somatotopic

space that maps the surface of the skin is just as susceptible to the illusory phenomenology

of spatial ventriloquism as the audiovisual mapping, and moreover that it is also governed

by the Bayesian causal inference model. Finally, Chapter 4 documents evidence that mere

exposure to discrepant visual-tactile stimuli can induce an aftereffect in this visuo-tactile

mapping.
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In Chapter 5, I propose a novel theoretical framework for body ownership, the Bayesian

body hypothesis, that incorporates elements from the computational modeling approach I

used in earlier chapters, as well as some of the cognitive constraints that others had previously

proposed (Makin et al., 2008; Tsakiris, 2010), thus providing the first complete theoretical

framework for the investigation of body ownership.

6.2 Limitations and Considerations

Let us now turn our attention briefly to the merits and limitations of the present body

of work. As with any research project, there are many grains of salt with which the con-

clusions ought to be taken. Seeing as we have now arrived at the concluding chapter of the

dissertation, it would seem to be a most appropriate moment to spend a little time in this

consideration.

Merits and Flaws in Chapter 2

In Chapter 2, I proposed the first computational account of the rubber hand illusion.

Since then, that work has already started to generate much interest in the field as researchers

investigating body ownership seek to rest their accounts on firmer mathematical foundations.

The model that was first proposed in Chapter 2 has the potential of being extended to account

for a great variety of facets of body ownership (see Chapter 2 Discussion for more on this).

Therefore, the work described therein provides the much needed first step to understanding

the mechanisms of perception and ownership over the whole body and paves the way for

that line of work. Another merit was the discovery of the touchless illusion and validation
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of the model that this aided with.

With regard to limitations, the model was not quantitative and thus serves purely as a

proof of principle at this early stage. Of course, the next step is collect sufficient data to

be able to conduct model fitting using the spatiotemporal Bayesian causal inference model,

a feat that was not yet possible at the time that project was conducted. An additional

limitation of that work was that we did not adequately explain the large SCR signal at

eye-opening. In particular, why that time point should generate an even larger SCR than

the threat time point continues to be mysterious and deserves to be investigated further.

In that work, we interpreted the eye-opening signal as a measure of the illusion, especially

because the difference between it and our control conditions at that time point was very

large. However, the threat had not yet been presented, and therefore the interpretation

requires more nuance in terms of a justification for the large conductance signal. At the

time, we reinterpreted the signal as a measure of surprise, provoking a physiological arousal

that manifested as an SCR, and left it at that. Thus, this is clearly a potential avenue for

further elucidation of the phenomenon.

Merits and Flaws in Chapter 3

In Chapter 3, I described a project demonstrating a form of ventriloquism that occurs

on the surface of the body. As such, it represents the discovery of a novel phenomenon of

multisensory perception. In addition, we also showed that the Bayesian was a good fit to the

data and thus represents the generalizability of that model to a new paradigm, extending

its applicability to multisensory phenomena. In that regard, we also got one step closer

to the goal of providing a quantitative Bayesian causal inference model for a body related

138



phenomenon, although this was a one-dimensional model operating in space only. The goal

of quantifying the spatiotemporal model remains to be done.

One noteworthy limitation of that work was the lack of a satisfactory explanation for the

off-center tactile prior. We have repeatedly noticed in this paradigm, the intriguing pattern

of localization errors that compresses unisensory tactile localizations, and moreover, whose

center of gravity is not the center of the space, but is rather a point somewhere between

the elbow and the center of the forearm. We attempted to account for this by recourse

to mechanisms akin to cortical magnification arising out of the differential distribution of

mechanoreceptors in the skin, but further investigations are greatly needed.

Merits and Flaws in Chapter 4

Finally, in Chapter 4, I described an extension of the work on visuotactile ventriloquism

that showed the existence of a visuotactile ventriloquism aftereffect. This is a highly in-

teresting finding showing that very brief exposure to discrepancy between the visual and

tactile stimuli can cause a measurable recalibration between the two spaces, just as a similar

phenomenon has been observed for the other forms of ventriloquism.

6.3 Suggestions for Future Work

Taken as a whole, this dissertation represents only the very beginnings of the effort

towards understanding the computational principles that underlie body representation. In

that regard, the contribution of this dissertation has to be interpreted as paving the way for

future studies seeking to continue this line of work. Therefore, we would be very well advised
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to learn from the lessons contained within these pages, and to inform the future generations

of scientists interested in advancing the knowledge of this subject matter.

The Origins of Unisensory Biases

First, it is suggested that future research tackle the outstanding question regarding the

origin of the biases that have been repeatedly observed in localization paradigms akin to

the visuotactile ventriloquism paradigm that has been described in Chapters 3 and 4 of

this dissertation. The origin of these biases remains an open question especially regarding

the idiosyncratic patterns that they often display. In the tactile modality, I have observed

biasing of unisensory localization estimates that seem to be centered at a point that is midway

between the middle of the forearm and the elbow. We have speculated on the origin of this

off-center attractor point as perhaps arising from the distribution of mechanoreceptors across

the skin – a line of argument reminiscent of Weber’s spatial compression observation (Ross

and Murray, 1978). However, a rigorous study of this phenomenon is highly recommended

if the question is to be satisfactorily answered.

A Quantitative Spatiotemporal Bayesian Model

Another suggestion relates to the results reported in Chapter 2 of this dissertation,

wherein the rubber hand illusion was shown to be compatible qualitatively with a spa-

tiotemporal form of the Bayesian causal inference model. Recall that a major limitation

of that work was our inability to conduct a more quantitative analysis of the suitability of

the model, due to the fact that only spatial estimates are collected from our subjects, and
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moreover that there is only one such estimate per subject. In order for model fitting to be

feasible, we would require first vastly more data points, but in addition, we would require

temporal as well as spatial estimates. Whether this would remain a workable requirement

within the framework of the rubber hand illusion or not remains to be seen, but it would

provide the field a great service if such a line of research was attempted.

Generalizations of Bayesian Causal Inference

Another line of research that I wish I had had more time to devote to relates to extending

the generality of the causal inference model. What is most problematic about the model

is its specificity to the case where there are only two sensations presented to the observer,

whose inference thus only needs to consider whether they would have had 1 or 2 causes in the

environment. The reality of this process, however, is evidently far less constrained, receiving

as we do many more than just two sensations at any moment in time, and often perceiving

many objects and events in the world that are collectively clustered from our sensations.

Nevertheless, the explicit mathematics of the model make it so that any consideration of more

than 2 causes renders the computations intractable due to a combinatorial explosion that is

necessitated by the model’s explicit representation of the entire hypothesis space upon which

the inference proceeds. Therefore, some alternative mechanism ought to exist to quickly and

efficiently explore this space and perform the inferences as the brain innately appears to do.

I had briefly ventured into a variety of non-parametric forms of the causal inference model,

which led me to unsupervised clustering algorithms as well as the Expectation-Maximization

algorithm and Variational Bayes. But I have seemingly run out of time and will not be able
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to continue this pursuit. However, I believe that this will be a breakthrough in the near

future that will enable the field to begin to apply the process of causal inference to more

ecological stimuli.

In pursuit of this goal, I had also begun conducting a mathematical analysis of the

computations of Bayesian causal inference, and noticed an appealing similarity of it with the

computations involved in signal detection theory (SDT). The notion of d′, which is intended

to convey a measure of discriminability between two signals, offers a potential avenue to

heuristically shortcutting the explicit representation of the hypothesis space. I feel very

strongly that profoundly more powerful models will be devised with the aid of heuristics

related to this, all the more so given the mathematical affinity between the two that I have

briefly observed, but have not pursued. On a related note, the information theoretic notion of

Kullback-Leibler divergence also offers a potential heuristic shortcut to the formal theoretical

causal inference process. A rigorous study of the ways in which these and related heuristics

can be substituted for the full model would be a very important contribution to this field.

Coordinate System Transformations

I have also been interested in investigating more deeply the spatial prior that we have

always used in our Bayesian models. In particular, I have always wished to explore whether

a coherent model can be contrasted with it that includes modality-specific priors. More

generally, the question that continues to vex me relates to understanding the characteristic

biases we observe in these localization paradigms, as discussed above, and importantly,

whether these biases can be accounted for with a model that incorporates modality-specific

142



encoding followed by coordinate-transformation to read out the posterior into the task-

relevant reference frame. This is important because in our paradigms there has always been

an inherent asymmetry such that stimuli are presented from multiple sensory modalities, but

the response relies only on the visual modality. In this, we have always assumed that the

posterior is amodal, and thus can be read out into either of the source modalities. However,

it may be that signals are always modality-specific, and that the integrative process relies on

arbitrating between their influences, such that a response in one modality requires an active

transformation from the coordinate system of the other modality to its own. Such a model

would challenge the Bayesian causal inference model described throughout this dissertation

because it would require modality-specific priors and would introduce a new node in the

graphical model with the express purpose of capturing this transformation (See Figure 6.1).
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Figure 6.1: Bayesian Causal Inference with Coordinate System Transformation.
This directed acyclic graph depicts the generative model for multisensory integration with
coordinate system transformations. In short, the variable C denotes the number of causes
in the environment. If C = 1, then there is one true source, s, that generates the sensory
signals xv and xt. Note that since x is represented in the task-relevant reference frame, we
require an intervening coordinate transformation, xv = f(yv) and xt = f(yt), in order to
account for systematic differences in the way different modalities encode information. Thus,
we can refer to the step from s to y as encoding, and the step from y to x as coordinate
transformation. In the case where C = 2, the environment contains two sources, sv and
st, which are therefore independently encoded in their modality-specific reference frames as
yv and yt, and then subsequently transformed into the task-relevant reference frame as xv
and xt.
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6.4 Significance

The body of work presented in this dissertation has broad relevance and applicability to a

variety of fields of inquiry. As mentioned in the introduction, there are numerous aberrations

from normality in regard to the psychological and perceptual representation of our own

bodies. The more that the basic principles that underlie body ownership are understood,

the higher are the chances that these syndromes may be alleviated. As a few examples,

there are the psychiatric conditions known as body dysmorphic disorder and anorexia and

its associated eating disorders, both of which involve abnormalities in the way that body-

related information is processed by the perceptual system. At the very least, a model of

the healthy functioning of the system can provide for a principled and quantitative way

to both diagnose, as well as treat, these and related disorders. In addition, there are the

many sufferers of limb amputation that experience the excruciating agony of phantom limb

pain, for whom interventions that manipulate the body ownership have already proven to be

efficacious (Ramachandran et al., 1995). In the future, investigations like those documented

in this dissertation may well build on this and also help such patients incorporate prosthetics

more fully into their body ownership.

Beyond its ability to contribute to the understanding and treatment of disorders, knowl-

edge of the way in which the nervous system processes body related information and develops

a sense of self-consciousness grounded therein has applications in the fields of robotics and

artificial intelligence. As technology progresses, there may well come a time when a pro-

gram similar to the one the human nervous system uses will have to be implemented in an

autonomous agent that uses this as the stepping stone towards a full fledged consciousness
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oriented around this nascently emergent self.

6.5 Conclusion

In conclusion, this dissertation was a multi-pronged attempt to study various aspects of

body ownership and body representation from the perspective of multisensory integration

and the computational models that have been proposed as accounts of such. To summarize,

the rubber hand illusion and a novel multisensory illusion we have called the visuotactile

ventriloquist effect have been observed and modeled using two forms of the Bayesian causal

inference model which differ only in terms of the space that they model, namely peripersonal

space in the former and somatotopic space in the latter. Resultantly, a comprehensive

model has been proposed in a few different varieties, which aims to incorporate the inference

over both spaces into one overarching causal inference model of body ownership. It is my

sincere hope and wish that this contribution to the field be given its consideration under

the uncompromising light of the scientific method, and that it becomes a stepping stone in

service of those who strive dispassionately and unfalteringly towards the asymptotic goal of

complete knowledge of the natural world.
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Appendix A

Bayesian Causal Inference Toolbox

(BCIT) for MATLAB

A.1 Abstract

BCIT is a software extension built for the MATLAB platform, intended to facilitate run-

ning simulations and model fitting using the Bayesian causal inference model, a statistical

framework for determining whether to integrate or segregate information arriving to the ner-

vous system from different sensory channels. This is of relevance for many multisensory phe-

nomena that result from the tricking of the sensory-perceptual system such as ventriloquism,

the flash-beep illusion, the rubber hand illusion, and the Mckgurk effect. These illusions can

all be accounted for under the normative framework of the Bayesian causal inference model.

The aims of this program are 1) to provide the user with a graphical user interface by which

the inner workings of the model can be made intuitive and easy to understand, and 2) to

provide the user with the necessary machinery to be able to run an optimization procedure
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to obtain optimal model fits to user-supplied datasets. Therefore, the primary intention with

releasing this toolbox is to enhance the acquisition of the intuition behind the computational

framework, which we hope to achieve by the implementation of user interface elements to

control various parameters in the model, and to instantaneously observe the effect they have

on the output from the model. Noting that the model is typically used to account for ex-

perimentally collected data, and would thus be intended to be fit to such data, we are also

hoping to eliminate the barriers that prevent researchers from implementing the model and

conducting fitting. Here, we present the toolbox and provide a description of the models

that are implemented in it, and we also document a validation procedure demonstrating the

convergence of the fitting procedure to the approximately correct parameters. Therefore, this

toolbox provides a powerful platform for the rapid implementation of the Bayesian causal

inference model.

A.2 Introduction

The Bayesian causal inference model is a well-established computational model of percep-

tion that performs a statistical inference to determine whether signals across different sense

modalities originated from the same cause, and thus ought to be integrated, or otherwise,

and thus ought to be segregated. It was established nearly a decade ago and has been widely

used since then to account for a wide range of multisensory perception phenomena (Kording

et al., 2007; Beierholm et al., 2009b,a; Wozny et al., 2010; Samad et al., 2015; Samad and

Shams, 2016; Rohe and Noppeney, 2015; Kilteni et al., 2015).

Specifically, the causal inference model is a statistical inference model that performs an
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arbitration between integration and segregation, based on the spatiotemporal congruence

of the signals – or indeed congruence along any suitably defined space – as well as a prior

tendency to integrate/segregate. As such, this model represents a significant advance in the

field of computational modeling from the method commonly known as Maximum Likelihood

Estimation (MLE), which assumes that the signals of interest ought to always be combined,

and thus, that they were generated by a common cause (Ernst and Banks, 2002). In contrast,

the causal inference model makes no such assumptions but rather infers whether the situation

of having been generated by a common cause or separate causes is more likely and then

estimates the stimulus attributes accordingly.

This model has been shown to account for a wide range of multisensory phenomena

across many domains including numerosity judgments in the flash-beep illusion (Wozny

et al., 2008), spatial localization judgments in an audiovisual task (Wozny et al., 2010) and

a visuotactile task (Samad and Shams, 2016), the size-weight illusion (Peters, 2014) and

the rubber hand illusion (Samad et al., 2015), and has even been shown to account for the

Mcgurk-Mcdonald Effect (Magnotti et al., 2013). The dissemination and distribution of this

toolbox will, therefore, provide a very important service to the field of perception, and by

extension computational neuroscience. In recent years, we have seen an explosion of interest

in this computational framework by research groups from all around the world. Providing

them with an interface as user-friendly as ours will dramatically reduce the friction with

which they will be able to make use of its powerful computations.

Across these different domains, three general forms of the model have been in use, and

are therefore provided to the user with the current software release. Namely, we are referring

to the models of localization and numerosity across a variety of modalities. These have been
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modeling using the Bayesian causal inference model that is characterized over a continuous or

a discrete space. A third variant was introduced by Samad et al. (2015) in order to account

for the rubber hand illusion and thus operates over a two dimensional (spatiotemporal)

continuous space. Therefore, in what follows, we will concern ourselves with these three

forms.

Mathematical Formulation

The model utilizes the following form of Bayes Rule:

p(C|x1, x2) = p(x1, x2|C)p(C)
p(x1, x2) (A.1)

where x1 and x2 are two signals received by the nervous system, and C is a binary variable

denoting the number of causes in the environment, 1 or 2.

Therefore, the posterior probability of the signals having a single cause in the environment

is computed as:

p(C = 1|x1, x2) = p(x1, x2|C = 1)p(C = 1)
p(x1, x2|C = 1)p(C = 1) + p(x1, x2|C = 2)(1− p(C = 1)) (A.2)

where the likelihood probability is:

p(x1, x2|C = 1) =
∫∫

p(x1, x2|X)p(X)dX (A.3)

and p(C = 1) is the prior probability of a common cause. X denotes the attributes of

the stimuli in the dimension of relevance, and which gives rise to the neural representa-

tions {x1, x2}. It is modeled as a continuous random variable and has the following prior:

N (µX , σX), where N (µ, σ) stands for a normal distribution with mean µ and standard de-

viation σ. Equation A.2 shows that two factors contribute to the inference of a common
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cause: the likelihood (the first term in the numerator) and the prior (the second term in the

numerator). A high likelihood (Equation A.3) occurs if the sensory signals are similar. The

prior probability of a common cause, p(C = 1), on the other hand, is independent of the

present sensations, and depends on the observer’s prior experience.

Note that the rest of the full mathematical formulation is left out from this document as

it has appeared previously in print, and we direct the inquisitive reader thereto for further

elucidation. In the tables which follow, any ambiguous formulation will be paired with an

Equation number in Wozny and Shams (2011a) that describes the formulation in full detail.

A.3 Program Description

BCIT is structured into two main types of operations: simulation and model fitting.

The former permits the user to simulate from a selection of the three most commonly used

variants of the model. These will be described in much greater detail below. The model

fitting aspect permits users to use the fminsearchbnd.m optimization method on their own

data sets, or alternatively, on a sample data set created from the create_data.mat file that

is included. Thus, the user interface is structured into a main panel that allows the user to

choose from among different model types, and whether simulation or fitting is desired. From

there, the user navigates through some additional panels to achieve the desired computation,

which will be described in the sections that follow.

151



The graphical user interface

The main menu that the user sees upon first opening up the program is illustrated in

Figure A.1. Here the user is presented with a choice from amongst the three most commonly

used variants of the model: one dimensional continuous space, one dimensional discrete

space, and two dimensional continuous space.

The user is also provided with the option to run simulations using these all three of the

variants and can launch separate windows to view these simulations by having selected the

desired model and pressing the “Simulate” button. In addition, the user is provided with

the ability to conduct a model fitting procedure for a dataset of choice, using either of the

one dimensional models, by selected one of them and pressing the “Fit Model” button. Note

that a model fitting routine for the two dimensional model was not provided as this has not

yet been performed due to the difficulty with acquiring a suitable dataset.

Figure A.1: Main Menu of the GUI
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The simulation panels

The primary aim of this project is to provide the user with an interface by which the

inner workings of the Bayesian causal inference model can be made intuitive and easy to

understand. Therefore, the primary intention with releasing this toolbox is to enhance the

acquisition of the intuition behind the computational framework, and is thus primarily to

be used as an educational tool. To that end, we hope to be able to provide the user with

interface elements to control various parameters in the model, and instantaneously be able

to observe the effect they have on the output from the model.

The simulation panels are split into three parts.
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Model Elements
Response Distribution The model output: a distribution of the

estimates of the positions of the stimuli
based on the likelihood and prior

Stimulus Encoding The probability density functions repre-
senting the encoding of the stimuli, mod-
eled as Gaussian distributions. See equa-
tions 1 and 2 in Wozny and Shams (2011a)

Spatial Prior The probability density function repre-
senting the expected stimulus location,
modeled as a Gaussian distribution. See
equation 3 in Wozny and Shams (2011a)

Model Estimates Mode Most probable estimated response
Mean Mean estimated response

Strategies
Selection Model selection is when the observer se-

lects the most likely causal structure and
estimates the stimulus location wholly on
the basis of the selected model. See equa-
tion 16 in Wozny and Shams (2011a)

Averaging Model averaging is when the observer
weights the estimates of the stimulus loca-
tions by the inferred probabilities of their
causal structure. Considered the most op-
timal strategy. See equation 15 in Wozny
and Shams (2011a)

Matching Probability matching is a strategy that
choses the estimates from either causal
structure based on their inferred proba-
bilities. Although this method is subopti-
mal, it appears to be the most frequently
used in cognitive tasks. See equation 17
in Wozny and Shams (2011a)

Table A.1: Simulation Panels: Overview of Settings
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Stimulus Position Stimulus 1 The true position of the stimulus
(modality 1)

Stimulus 2 The true position of the stimulus
(modality 2)

Parameters

P(C=1) The prior probability that both
signals can be attributed to one
cause

SD(1) The standard deviation of the
Gaussian distribution of the like-
lihood for modality 1

SD(1) The standard deviation of the
Gaussian distribution of the like-
lihood for modality 2

SD(Prior) The standard deviation of the
Gaussian distribution of the prior
(the anticipated location of the
stimuli )

Mean(Prior) The mean of the Gaussian distri-
bution of the prior

Additional Parameters Additional parameters specific to
the models will be discussed in
the detailed model descriptions
below

Bottom Panel Buttons
Screenshot Saves a copy of the screenshot

(figure, all parameters) with user-
set filename to the current direc-
tory

Reset Resets all parameters and figure
to default settings

Return Returns to the main menu

Table A.2: Simulation Panels: Overview of UI Elements
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One Dimensional Continuous

This model is one dimensional and continuous. This represents the most basic form of

the model and is most akin to the form that was introduced in the seminal paper in 2007

(Kording et al., 2007). Over the years, we have produced several variants of it that were

tailored for particular tasks and domains. But it is best we begin our discussion of the core

computations with reference to this initial form.

Figure A.2: Simulation Panel 1: One Dimensional Continuous

For all parameters: Both the boxes and sliders can be used to manipulate values. Sliders

can be manipulated either by using the arrow keys attached to the left and right or by

pressing the spaces to the left or right of the value indicator, and the increments of the

sliders are given below.
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Model Elements (1)
Response Distribution (1a) Indicated by the solid blue and

red lines
Stimulus Encoding (1b) Indicated by the dotted blue and

red lines
Spatial Prior (1c) Indicated by the dotted green line

Model Estimates (2)
Mode (2a) Value indicated by red and blue

diamonds
Mean (2b) Value indicated by red and blue

squares
Display Values (2c) Shows the value of the model esti-

mate of probability on the figure

Strategies (3)
Selection (2a) See explanations in

“Description” section, under
“Simulation Panels”

Averaging (3b)
Matching (3c)

Stimulus Position Stimulus 1 (4) Stimulus position ranges from
-40 to 40. Sliders increment by 1Stimulus 2 (5)

Elements Parameter

P(C=1) (6) Probability values range from 0 to
1. Slider increments by 0.01

SD(1) (7) Standard deviation of X1 signal
ranges from 0.1 to 50. Slider in-
crements by 0.1

SD(1) (8) Standard deviation of X2 signal
ranges from 0.1 to 50. Slider in-
crements by 0.1

SD(Prior) (9) Standard deviation of prior signal
ranges from 1 to 50. Slider incre-
ments by 0.1

Mean(Prior) (10) Average of prior signal ranges
from -40 to 40. Slider increments
by 1

Table A.3: One-Dim Continuous Simulation Panel: Description of UI Elements

One Dimensional Discrete

This model is also one dimensional and discrete.

For all parameters: Both the boxes and sliders can be used to manipulate values. Sliders

can be manipulated either by using the arrow keys attached to the left and right or by

pressing the spaces to the left or right of the value indicator. The increments of the sliders
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Figure A.3: Simulation Panel 2: One Dimensional Discrete

are given below.
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Model Elements (1) Response Distribution (1a) Model estimate indicated by red
and blue bars

Model Estimates (2) Mode (2a) Value indicated by red and blue
diamonds

Mean (2b) Value indicated by red and blue
squares

Strategies (3)
Selection (2a) See explanations in

“Description” section, under
“Simulation Panels”

Averaging (3b)
Matching (3c)

Stimulus Position
Stimulus 1 (4) Discrete stimuli can be specified

as: 0, 1, 2, 3 or 4Stimulus 2 (5)

Elements Parameter

P(C=1) (6) Probability values range from 0 to
1. Slider increments by 0.01

SD(1) (7) Standard deviation of X1 likeli-
hood ranges from 0.1 to 50. Slider
increments by 0.1

SD(1) (8) Standard deviation of X2 likeli-
hood ranges from 0.1 to 50. Slider
increments by 0.1

SD(Prior) (9) Standard deviation of prior
ranges from 1 to 50. Slider
increments by 0.1

Mean(Prior) (10) Mean of prior ranges from -40 to
40. Slider increments by 1

Table A.4: One-Dim Discrete Simulation Panel: Description of UI Elements

Two Dimensional Continuous

This model is used for spatiotemporal causal inference.
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Figure A.4: Simulation Panel 3: Two Dimensional Continuous
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Model Elements (1)
Response Distribution (1a) Indicated by the solid blue and

red lines
Stimulus Encoding (1b) Indicated by the dotted blue and

red lines
Spatiotemporal Prior (1c) Indicated by the dotted green line

Model Estimates (2)
Mode (2a) Value indicated by red and blue

diamonds
Mean (2b) Value indicated by red and blue

squares
Display Values (2c) Shows the model estimates on the

figure

Strategies (3)
Selection (2a) See explanations in

“Description” section, under
“Simulation Panels”

Averaging (3b)
Matching (3c)

Stimulus Position Delta_X (4) This value changes the difference
between the stimuli along the x-
axis

Delta_T (5) This value changes the difference
between the two stimuli along the
y-axis

Probability P(C=1) (6) Probability values range from 0 to
1

Spatial

SD_X(1) (7a) Standard deviation of X1 likeli-
hood ranges from 0.1 to 50

SD_X(2) (8a) Standard deviation of X1 likeli-
hood ranges from 0.1 to 50

Mean_X(Prior) (9a) Spatial mean of the prior, ranges
from -40 to 40

SD_X(Prior) (10a) Spatial standard deviation of the
prior, ranges from 0.1 to 50

Temporal

SD_T(1) (7b) Temporal standard deviation of
modality 2 likelihood, ranges
from 0.1 to 50

SD_T(2) (8b) Temporal standard deviation of
modality 2 likelihood, ranges
from 0.1 to 50

Mean_T(Prior) (9b) Temporal mean of the prior,
ranges from -40 to 40

SD_T(Prior) (10b) Temporal standard deviation of
the prior, ranges from 0.1 to 50

Table A.5: Two-Dim Continuous Simulation Panel: Description of UI Elements
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The fitting panel

Noting that the model is typically used to account for experimentally collected data, and

would thus be intended to be fit to such data, we secondarily intend to provide our users with

the necessary machinery to be able to achieve this stated purpose of the model, given that

the data they have collected conforms to our nominal conventions, which are to be specified

in the documentation. While there are a great many variants of the model that have been

implemented over the years for fitting purposes, we will provide a restricted set of the eight

most commonly used parameters and give the user control over which of them to include in

the fitting procedure, as well as the three most commonly used decision strategies by which

the model estimates are read out.

Figure A.5: Fitting Panel
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Strategies (1)
Selection For strategy descriptions, see

explanations in “Description” section,
under “Simulation Panels”

Averaging
Matching

User Inputs
Subject List (2) Users can upload their data using a spe-

cific layout in a .mat format (see A Note
on How to Format Data)

Number of Seeds (3) Sets the number of seeds used to analyze
user data, increasing this number will re-
quire more processing time. Number of
seeds will be consistent and independent
for all strategies the user runs

Tolerance (4) The lower bound on changes in error that
the optimizer uses as a criterion for con-
vergence

Parameters
The user can
designate all
parameters as either
“Free Parameters” or
“Fixed Values”. Free
parameters will be
allowed to vary
between a
user-specified lower
bound and upper
bound. Using more
free parameters will
increase the model fit
to the data, however
it will increase the
processing time
required.

P(C=1) (5) The prior probability that both signals
can be attributed to one cause

SD(X1) (6) The standard deviation of the Gaussian
distribution of the sensory encoding for
modality 1

SD(X2) (7) The standard deviation of the Gaussian
distribution of the sensory encoding for
modality 2

SD(Prior) (8) The standard deviation of the Gaussian
distribution of the prior

Mean(Prior) (9) The mean of the Gaussian distribution of
the prior

Delta_X1 (10) A multiplicative factor that scales the
mean of the Gaussian distribution for the
sensory encoding for modality 1

Delta_X2 (11) A multiplicative factor that scales mean of
the Gaussian distribution for the sensory
encoding for modality 2

Delta_SD(X1) (12) A multiplicative factor that scales the
standard deviation of the Gaussian distri-
bution for the sensory encoding for modal-
ity 1 as a function of the space

Delta_SD(X2) (13) A multiplicative factor that scales the
standard deviation of the Gaussian distri-
bution for the sensory encoding for modal-
ity 2 as a function of the space

Table A.6: Fitting Panel: Description of UI Elements
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Description of Model Fitting Procedure

Our implementation of model fitting relies on the use of the included function

fminsearchbnd.m, which is based on the built-in Matlab function fminsearch.m. Briefly,

this function implements the Nelder & Mead Simplex algorithm for derivative-free optimiza-

tion, that is, for use with objective functions that are difficult or impossible to calculate

gradients for. In the case of this toolbox, the objective function is based on the calculation

of the negative log likelihood of the data to be fit given the predicted response distribution

that is estimated from the model parameters. Given the complexity of the model structure,

it is not readily apparent how a gradient of this error quantity with respect to the parameters

can be computed, thus making fminsearchbnd.m a good choice of optimization algorithm.

The difference between fminsearchbnd.m and fminsearch.m is that the former adds a way

to constrain the space within which the algorithm searches for parameters, thus requiring

the user to specify these bounds individually for each parameters to be optimized. This

is an important and desired property for our purposes because it prevents the optimizer

from diverging too wildly in its estimates and helps minimize the variance of the optimized

parameters.

As with fminsearch.m, fminsearchbnd.m requires the user to input initial values from

which the optimizer begins its descent down the error hill. These are chosen by random

sampling from the uniform distribution encompassing the space defined by the bounds on

each parameter. The greater the number of such initial random Seeds, as they are called,

the less likely that the optimizer will be stuck in a local minimum, and thus the greater

will be the modeler’s faith that it will converge onto a global optimum. Another factor to
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consider here is also the criterion on error changes that the optimizer uses to terminate the

procedure and consider its parameters converged. This is often referred to as the Tolerance

and a careful setting of its value can greatly aid in the efficient optimization of a set of

parameters. If it is set too low, the optimizer will waste computational resources chasing

negligible reductions in error that do not add significant improvements, but in contrast, if the

value is too high, the optimizer will terminate very rapidly without generating a satisfactory

fit.

Figure A.6: Model Fits and Optimized Parameters

A Note on How to Format Data

If researchers wish to use their own data for conducting model fitting using this toolbox,

a few very important considerations regarding the format of the data will arise. In order for
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Legend (1)

X1 True True position of the first stimulus repre-
sented by the red dotted line

X2 True True position of the second stimulus rep-
resented by the blue dotted line

X1 Fit Model estimate for first stimulus location
probability represented by solid red line

X2 Fit Model estimate for second stimulus loca-
tion probability represented by solid red
line

Plots (2) Axes Axes mirror that of the simulation panels
for the 1-dimension continuous model, the
X corresponding to spatial location rang-
ing from -40 to 40 degrees and the Y cor-
responding to the normalized probability
of perceived location of the stimuli

Layout The plots are displayed such that mov-
ing horizontally rightward corresponds to
shifting the true position of the second
stimuli rightward. Conversely moving
downwards vertically corresponds to shift-
ing the true position of the first stimuli
rightward

Optimized Parameters (3)
Subject ID The subject number for which the param-

eters were optimized for
Strategy The optimal strategy used for parameters

(calculated in model fitting based on the
selected strategies in the control panel)

Parameters The optimized parameter values
Buttons (4) Screenshot The screenshot button will save both the

plots as well as the optimization parame-
ters as a 300 dpi .png file (named by user)
to the current directory. The button will
disappear as the image is being saved and
then reappear after the process is com-
plete

Table A.7: Model Fitting Results: Description of Figure Output

the built-in model fitting routines to properly function, the data format conventions that we

have outlined below must be adhered to. The included file in the toolbox create_data.mat,
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can be examined for a demonstration of how this format is implemented. In brief, the data

must be stored as a MATLAB data structure, the required details of which will be explained

in more detail in what follows.

Firstly, the data structure variable must be assigned the name “data”, and it is critical

that the data structure contain the following required fields, which the model fitting routine

expects and utilizes for setting up and performing the fitting procedure. (1) A field with the

name “N” indicating the number of Monte Carlo samples to take in computing the model

estimates – setting this equal to 10,000 will suffice in most cases. (2) A field with the name

“space” that contains the discretized continuum upon which the data and model fits will be

represented – it is often useful to construct this so as to yield 1 degree of visual angle per

discrete unit. (3) A field with the name “stim_locs” that contains the stimulus positions

within the space from where stimuli can be presented – note that the first element must

be a NaN so as to indicate the possibility of unisensory conditions. (4) A field with the

name “conds” whose columns specify all the possible unique stimulus combinations – the

two rows represent the stimulus positions for the two modalities, respectively, with a NaN

indicating the lack of the presentation of a stimulus from that modality, thus, a unisensory

condition. (5) A field with the name “stim” indicating the order of trials, it is essentially a

pseudorandomly generated permutation of the columns of the “conds” field – thus it has as

many columns as there were trials in the experiment and two rows for the two modalities

that stimuli could be presented from. (6) A field with the name “resp”, which has the same

dimensions as the “stim” field, but which stores the responses on each of those trials that

are indicated therein. (7) A field with the name “cond_resps” and containing an array that

stores all the responses sorted into columns according to the conditions indicated by the
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“conds” field. Thus “cond_resps” has as many columns as “conds”, as many rows as there

were repetitions for each particular stimulus configuration, and has dimension 2 along the

third index separating the data based on whether the responses were from modality 1 or

modality 2. (8) A field with the name “subject” that specifies a numeric identifier for the

subject that will be used to identify the fitting results.

A.4 Fitting Validation

Method

To demonstrate the standard operation of the fitting procedure that is built-in to the

toolbox, as well as to validate its proper functioning, we first created some example data using

the create_data.mat file that is included. This file utilizes the one dimensional continuous

Bayesian causal inference model, supplied with some parameters that the user is able to input.

For this simulation, we used the following parameters: {p(C = 1) = 0.5, σX1 = 2, σX2 = 5,

prior ∼ N (0, 15)}, and used a strategy of probability matching. The create_data.mat file

simulated 2030 trials of localization that included both unisensory and bisensory trials. There

were five candidate positions where stimuli from both modalities could be presented at, which

were separated by 12◦, thus providing for 35 possible stimulus configurations ((5 × 5 = 25

bisensory pairs) and (5 + 5 = 10 unisensory stimuli) = 35 total). The script runs through

a pseudorandomized and balanced order of stimulus configurations and generates simulated

response distributions using the supplied parameters. This distribution is then sampled in

accordance to its probability distribution in order to generate the dataset.
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Next, we ran the model fitting routine in order to observe whether the model would

converge on the parameters that we used in generating the simulations. We conducted this

using 100 random initial values that we used as seeds to the fitting procedure. These initial

values were selected by random sampling using a uniform distribution between the lower

and upper bounds. For this test, the bounds used were {p(C = 1) ∈ [0, 1], σX1 ∈ [1, 10],

σX2 ∈ [1, 10], prior ∼ N (µ ∈ [−40, 40], σ ∈ [10, 100])}. Here, we should hasten to add that

we ran this test with all three decision strategies selected. Thus, the optimization routine

will use each randomly generated initial seed three times as it attempts the model fitting

for all three strategies in turn, and selects the best fitting set of parameters and decision

strategy at the end.

In addition, we set the tolerance on error changes that would be used as a criterion for

convergence to 100. Note that since this error is computed as negative log likelihood of the

data under the simulated response distribution, the absolute value of the tolerance depends

strongly on the number of points that the model attempts to fit and would therefore require

modification for the particular dataset at hand. The value of 100 herein was chosen so as to

optimally balance speed of fitting with accuracy of fitted parameter values.

Results

The model fitting procedure took 10 minutes to complete on a Macbook (Retina, 15-inch,

Mid 2015, 2.8 GHz Intel Core i7, 16 GB 1600 MHz DDR3). In the table below, we report the

optimized parameters from the 8 runs of model fitting that we conducted. As can be clearly

seen, despite a little variation across runs, the parameters appear to converge satisfactorily
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onto the true values.

p(C = 1) σX1 σX2 µprior σprior Strategy Error
True Values 0.5 2 5 0 15 Probability Matching
Fitting Run 1 0.67 2.00 4.51 0.00 15.73 Probability Matching 7156.1
Fitting Run 2 0.45 2.03 5.21 0.00 14.05 Probability Matching 7136.9
Fitting Run 3 0.40 1.91 5.17 0.00 16.04 Probability Matching 7142.2
Fitting Run 4 0.38 1.96 4.70 0.00 13.68 Probability Matching 7154.7
Fitting Run 5 0.54 2.09 5.71 0.00 14.74 Probability Matching 7156.3
Fitting Run 6 0.45 1.91 4.84 0.00 14.14 Probability Matching 7144.0
Fitting Run 7 0.53 2.11 5.26 0.00 18.02 Probability Matching 7143.2
Fitting Run 8 0.52 2.10 5.04 0.00 15.01 Probability Matching 7130.3

Table A.8: Results: Optimized Parameter Fits

A.5 Outlook

Here we present a new computational tool designed for the purpose of aiding researchers

to better understand and implement the Bayesian causal inference model as an explanatory

framework where they might have data suitable for this purpose. Many of the paradigms

of multisensory research are highly amenable to being modeled by this framework and we,

therefore, expect this tool to have widespread utility across the field. Aside from its educa-

tional function as an intuition-building software package, this tool also provides researchers

the ability to generate fits of the model to their own data, gaining insights into the behavior

of subjects through the optimized parameters. In the past decade of work on this model, it

still remains a complex framework to grasp, and there is often a steep barrier to its utiliza-

tion by research groups interested in doing so. We, therefore, expect this tool to be of use to

researchers in a variety of disciplines such as experimental psychology, computational neu-
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roscience and cognitive science, who may wish to implement it for the study of multisensory

phenomena across a wide range of paradigms.

171



Bibliography

Abdulkarim, Z. and Ehrsson, H. H. (2016). No causal link between changes in hand position

sense and feeling of limb ownership in the rubber hand illusion. Attention, Perception &

Psychophysics, 78(2):707–720.

Alais, D. and Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal

integration. Current biology: CB, 14(3):257–262.

Alsius, A., Navarra, J., Campbell, R., and Soto-Faraco, S. (2005). Audiovisual integration

of speech falters under high attention demands. Current biology: CB, 15(9):839–843.

Armel, K. C. and Ramachandran, V. S. (2003). Projecting sensations to external objects:

evidence from skin conductance response. Proceedings of the Royal Society B: Biological

Sciences, 270(1523):1499–1506.

Asai, T., Mao, Z., Sugimori, E., and Tanno, Y. (2011). Rubber hand illusion, empathy,

and schizotypal experiences in terms of self-other representations. Consciousness and

Cognition, 20(4):1744–1750.

Aspell, J. E., Heydrich, L., Marillier, G., Lavanchy, T., Herbelin, B., and Blanke, O. (2013).

Turning body and self inside out: visualized heartbeats alter bodily self-consciousness and
172



tactile perception. Psychological Science, 24(12):2445–2453.

Avillac, M., Hamed, S. B., and Duhamel, J.-R. (2007). Multisensory Integration in the Ven-

tral Intraparietal Area of the Macaque Monkey. The Journal of Neuroscience, 27(8):1922–

1932.

Baily, J. S. (1972). Arm-body adaptation with passive arm movements. Perception &

Psychophysics, 12(1):39–44.

Bedford, F. L. (1989). Constraints on learning new mappings between perceptual dimensions.

Journal of Experimental Psychology: Human Perception and Performance, 15(2):232–248.

Beers, R. J. v., Sittig, A. C., and Gon, J. J. D. v. d. (1999). Integration of Propriocep-

tive and Visual Position-Information: An Experimentally Supported Model. Journal of

Neurophysiology, 81(3):1355–1364.

Beierholm, U., Kording, K. P., Shams, L., and Ma, W. J. (2009a). Comparing Bayesian

models of multisensory cue combination without mandatory integration. In Advances in

neural information processing systems, volume 20, pages 81–88. MIT Press, Cambridge,

MA.

Beierholm, U. R., Quartz, S. R., and Shams, L. (2009b). Bayesian priors are encoded

independently from likelihoods in human multisensory perception. Journal of Vision,

9(5):23–23.

Bekrater-Bodmann, R., Foell, J., Diers, M., and Flor, H. (2012). The perceptual and neu-

ronal stability of the rubber hand illusion across contexts and over time. Brain Research,

1452:130–139.
173



Botvinick, M. and Cohen, J. (1998). Rubber hands ‘feel’ touch that eyes see. Nature,

391(6669):756.

Brown, L. E., Rosenbaum, D. A., and Sainburg, R. L. (2003). Movement speed effects on

limb position drift. Experimental Brain Research, 153(2):266–274.

Bruns, P., Spence, C., and Roder, B. (2011). Tactile recalibration of auditory spatial repre-

sentations. Experimental Brain Research, 209(3):333–344.

Butler, J. S., Smith, S. T., Campos, J. L., and Bulthoff, H. H. (2010). Bayesian integration

of visual and vestibular signals for heading. Journal of Vision, 10(11):23–23.

Caclin, A., Soto-Faraco, S., Kingstone, A., and Spence, C. (2002). Tactile “capture” of

audition. Perception & Psychophysics, 64(4):616–630.

Carruthers, G. (2008). Types of body representation and the sense of embodiment. Con-

sciousness and Cognition, 17(4):1302–1316.

Christie, M. and Venables, P. (1980). Electrodermal Activity. In Techniques in Psychophys-

iology, pages 2–67. John Wiley, New York.

Costantini, M. and Haggard, P. (2007). The rubber hand illusion: sensitivity and reference

frame for body ownership. Consciousness and Cognition, 16(2):229–240.

Craig, A. D. B. (2010). The sentient self. Brain Structure & Function, 214(5-6):563–577.

Dadarlat, M. C., O’Doherty, J. E., and Sabes, P. N. (2015). A learning-based approach to

artificial sensory feedback leads to optimal integration. Nature Neuroscience, 18(1):138–

144.
174



Davies, A. M. A., White, R. C., Thew, G., Aimola, N. M. V., and Davies, M. (2010).

Visual Capture of Action, Experience of Ownership, and the Illusion of Self-Touch: A

New Rubber Hand Paradigm. Perception, 39(6):830–838.

de Vignemont, F. (2010). Body schema and body image–pros and cons. Neuropsychologia,

48(3):669–680.

Desmurget, M., Vindras, P., Grea, H., Viviani, P., and Grafton, S. T. (2000). Proprioception

does not quickly drift during visual occlusion. Experimental Brain Research, 134(3):363–

377.

Dinh, H. Q., Walker, N., Hodges, L. F., Song, C., and Kobayashi, A. (1999). Evaluating

the importance of multi-sensory input on memory and the sense of presence in virtual

environments. In , IEEE Virtual Reality, 1999. Proceedings, pages 222–228.

Dummer, T., Picot-Annand, A., Neal, T., and Moore, C. (2009). Movement and the Rubber

Hand Illusion. Perception, 38(2):271–280.

Ehrsson, H. H. (2007). The experimental induction of out-of-body experiences. Science (New

York, N.Y.), 317(5841):1048.

Ehrsson, H. H., Holmes, N. P., and Passingham, R. E. (2005). Touching a rubber hand:

feeling of body ownership is associated with activity in multisensory brain areas. The

Journal of neuroscience : the official journal of the Society for Neuroscience, 25(45):10564–

10573.

Ehrsson, H. H., Spence, C., and Passingham, R. E. (2004). That’s my hand! Activity

175



in premotor cortex reflects feeling of ownership of a limb. Science (New York, N.Y.),

305(5685):875–877.

Epstein, S. and Roupenian, A. (1970). Heart rate and skin conductance during experi-

mentally induced anxiety: The effect of uncertainty about receiving a noxious stimulus.

Journal of Personality and Social Psychology, 16(1):20–28.

Ernst, M. O. and Banks, M. S. (2002). Humans integrate visual and haptic information in

a statistically optimal fashion. Nature, 415(6870):429–433.

Feldman, H. and Friston, K. J. (2010). Attention, Uncertainty, and Free-Energy. Frontiers

in Human Neuroscience, 4.

Ferri, F., Chiarelli, A. M., Merla, A., Gallese, V., and Costantini, M. (2013). The body

beyond the body: expectation of a sensory event is enough to induce ownership over a

fake hand. Proceedings. Biological Sciences / The Royal Society, 280(1765):20131140.

Folegatti, A., Farne, A., Salemme, R., and de Vignemont, F. (2012). The Rubber Hand

Illusion: two’s a company, but three’s a crowd. Consciousness and Cognition, 21(2):799–

812.

Frissen, I., Vroomen, J., de Gelder, B., and Bertelson, P. (2003). The aftereffects of ventril-

oquism: Are they sound-frequency specific? Acta Psychologica, 113(3):315–327.

Fujisaki, W., Shimojo, S., Kashino, M., and Nishida, S. (2004). Recalibration of audiovisual

simultaneity. Nature Neuroscience, 7(7):773–778.

Geldard, F. and Sherrick, C. (1972). The cutaneous "rabbit": a perceptual illusion. Science,

176



178(57):178–179.

Gentile, G., Guterstam, A., Brozzoli, C., and Ehrsson, H. H. (2013). Disintegration of

Multisensory Signals from the Real Hand Reduces Default Limb Self-Attribution: An

fMRI Study. The Journal of Neuroscience, 33(33):13350–13366.

Gepshtein, S., Burge, J., Ernst, M. O., and Banks, M. S. (2005). The combination of vision

and touch depends on spatial proximity. Journal of vision, 5(11):1013–1023.

Graziano, M., Yap, G. S., and Gross, C. G. (1994). Coding of visual space by premotor

neurons. Science, 266(5187):1054–1057.

Graziano, M. S. and Botvinick, M. M. (2002). How the brain represents the body: insights

from neurophysiology and psychology. Common mechanisms in perception and action:

Attention and performance, XIX:136–157.

Graziano, M. S. A. and Cooke, D. F. (2006). Parieto-frontal interactions, personal space,

and defensive behavior. Neuropsychologia, 44(6):845–859.

Graziano, M. S. A., Cooke, D. F., and Taylor, C. S. R. (2000). Coding the Location of the

Arm by Sight. Science, 290(5497):1782–1786.

Graziano, M. S. A. and Gross, C. G. (1998). Visual responses with and without fixation:

neurons in premotor cortex encode spatial locations independently of eye position. Exper-

imental Brain Research, 118(3):373–380.

Green, B. G. (1982). The perception of distance and location for dual tactile pressures.

Perception & Psychophysics, 31(4):315–323.

177



Guterstam, A., Gentile, G., and Ehrsson, H. H. (2013). The invisible hand illusion: multi-

sensory integration leads to the embodiment of a discrete volume of empty space. Journal

of Cognitive Neuroscience, 25(7):1078–1099.

Guterstam, A., Petkova, V. I., and Ehrsson, H. H. (2011). The Illusion of Owning a Third

Arm. PLOS ONE, 6(2):e17208.

Guterstam, A., Zeberg, H., ÃŰzÃğiftci, V. M., and Ehrsson, H. H. (2016). The magnetic

touch illusion: A perceptual correlate of visuo-tactile integration in peripersonal space.

Cognition, 155:44–56.

Haans, A., Ijsselsteijn, W. A., and de Kort, Y. A. W. (2008). The effect of similarities in skin

texture and hand shape on perceived ownership of a fake limb. Body Image, 5(4):389–394.

Hairston, W. D., Wallace, M. T., Vaughan, J. W., Stein, B. E., Norris, J. L., and Schirillo,

J. A. (2003). Visual localization ability influences cross-modal bias. Journal of Cognitive

Neuroscience, 15(1):20–29.

Hay, J. C. and Pick Jr., H. L. (1966). Visual and proprioceptive adaptation to optical

displacement of the visual stimulus. Journal of Experimental Psychology, 71(1):150–158.

Head, H. and Holmes, G. (1911). Sensory Disturbances from Cerebral Lesions. Brain,

34(2-3):102–254.

Held, R. and Hein, A. V. (1958). Adaptation of disarranged hand-eye coordination contingent

upon re-afferent stimulation. Perceptual and Motor Skills, 8(3):87–90.

Helmholtz, H. v. (1867). Handbuch der physiologischen Optik. Leopold Voss, Leipzig.

178



Herrera, G., Jordan, R., and Vera, L. (2006). Agency and Presence: A Common Dependence

on Subjectivity? Presence, 15(5):539–552.

Hirsh, I. J. and Sherrick, C. E. (1961). Perceived order in different sense modalities. Journal

of Experimental Psychology, 62:423–432.

Holle, H., McLatchie, N., Maurer, S., and Ward, J. (2011). Proprioceptive drift without

illusions of ownership for rotated hands in the "rubber hand illusion" paradigm. Cognitive

Neuroscience, 2(3-4):171–178.

Holmes, N. P., Crozier, G., and Spence, C. (2004). When mirrors lie: "visual capture" of arm

position impairs reaching performance. Cognitive, Affective & Behavioral Neuroscience,

4(2):193–200.

Holmes, N. P. and Spence, C. (2005). Visual bias of unseen hand position with a mirror:

spatial and temporal factors. Experimental Brain Research, 166(3-4):489–497.

Howard, I. and Templeton, W. (1966). Human spatial orientation. John Wiley & Sons,

Oxford, England.

Jones, S. A. H., Cressman, E. K., and Henriques, D. Y. P. (2010). Proprioceptive localization

of the left and right hands. Experimental Brain Research, 204(3):373–383.

Kalckert, A. and Ehrsson, H. H. (2012). Moving a Rubber Hand that Feels Like Your Own:

A Dissociation of Ownership and Agency. Frontiers in Human Neuroscience, 6.

Kammers, M. P. M., de Vignemont, F., Verhagen, L., and Dijkerman, H. C. (2009). The

rubber hand illusion in action. Neuropsychologia, 47(1):204–211.

179



Kennett, S., Taylor-Clarke, M., and Haggard, P. (2001). Noninformative vision improves the

spatial resolution of touch in humans. Current Biology, 11(15):1188–1191.

Kilteni, K., Maselli, A., Kording, K. P., and Slater, M. (2015). Over my fake body: body

ownership illusions for studying the multisensory basis of own-body perception. Frontiers

in Human Neuroscience, 9.

Kording, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., and Shams, L.

(2007). Causal Inference in Multisensory Perception. PLoS ONE, 2(9).

Ladavas, E. (2002). Functional and dynamic properties of visual peripersonal space. Trends

in Cognitive Sciences, 6(1):17–22.

Ladavas, E., Pellegrino, G. d., Farne, A., and Zeloni, G. (1998). Neuropsychological Evidence

of an Integrated Visuotactile Representation of Peripersonal Space in Humans. Journal

of Cognitive Neuroscience, 10(5):581–589.

Landy, M. S., Maloney, L. T., Johnston, E. B., and Young, M. (1995). Measurement and

modeling of depth cue combination: in defense of weak fusion. Vision Research, 35(3):389–

412.

Lenggenhager, B., Tadi, T., Metzinger, T., and Blanke, O. (2007). Video ergo sum: manip-

ulating bodily self-consciousness. Science (New York, N.Y.), 317(5841):1096–1099.

Lewald, J. (2002). Rapid Adaptation to Auditory-Visual Spatial Disparity. Learning &

Memory, 9(5):268–278.

Ley, P., Steinberg, U., Hanganu-Opatz, I. L., and Roder, B. (2015). Event-related potential

180



evidence for a dynamic (re-)weighting of somatotopic and external coordinates of touch

during visual-tactile interactions. European Journal of Neuroscience, 41(11):1466–1474.

Lloyd, D. M. (2007). Spatial limits on referred touch to an alien limb may reflect boundaries

of visuo-tactile peripersonal space surrounding the hand. Brain and Cognition, 64(1):104–

109.

Longo, M. R., Schuur, F., Kammers, M. P. M., Tsakiris, M., and Haggard, P. (2008). What

is embodiment? A psychometric approach. Cognition, 107(3):978–998.

Macaluso, E. and Maravita, A. (2010). The representation of space near the body through

touch and vision. Neuropsychologia, 48(3):782–795.

Magnotti, J. F., Ma, W. J., and Beauchamp, M. S. (2013). Causal inference of asynchronous

audiovisual speech. Frontiers in Psychology, 4:798.

Mahoney, J. R., Molholm, S., Butler, J. S., Sehatpour, P., Gomez-Ramirez, M., Ritter, W.,

and Foxe, J. J. (2015). Keeping in touch with the visual system: spatial alignment and

multisensory integration of visual-somatosensory inputs. Frontiers in Psychology, 6.

Makin, T. R., Holmes, N. P., and Ehrsson, H. H. (2008). On the other hand: dummy hands

and peripersonal space. Behavioural Brain Research, 191(1):1–10.

Makin, T. R., Holmes, N. P., and Zohary, E. (2007). Is that near my hand? Multisen-

sory representation of peripersonal space in human intraparietal sulcus. The Journal of

Neuroscience: The Official Journal of the Society for Neuroscience, 27(4):731–740.

Mamassian, P. and Landy, M. S. (1998). Observer biases in the 3d interpretation of line

181



drawings. Vision Research, 38(18):2817–2832.

Mamassian, P. and Landy, M. S. (2001). Interaction of visual prior constraints. Vision

Research, 41(20):2653–2668.

Marr, D. (1982). Vision: A Computational Investigation into the Human Representation

and Processing of Visual Information. W. H. Freeman.

Mcgurk, H. and Macdonald, J. (1976). Hearing lips and seeing voices. Nature, 264(5588):746–

748.

Meredith, M. A. and Stein, B. E. (1986). Visual, auditory, and somatosensory convergence on

cells in superior colliculus results in multisensory integration. Journal of Neurophysiology,

56(3):640–662.

Moseley, G. L., Gallace, A., and Iannetti, G. D. (2012). Spatially defined modulation of

skin temperature and hand ownership of both hands in patients with unilateral complex

regional pain syndrome. Brain: A Journal of Neurology, 135(Pt 12):3676–3686.

Moseley, G. L., Olthof, N., Venema, A., Don, S., Wijers, M., Gallace, A., and Spence, C.

(2008). Psychologically induced cooling of a specific body part caused by the illusory

ownership of an artificial counterpart. Proceedings of the National Academy of Sciences of

the United States of America, 105(35):13169–13173.

Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination.

Biometrika, 78(3):691–692.

Navarra, J., Soto-Faraco, S., and Spence, C. (2007). Adaptation to audiotactile asynchrony.

182



Neuroscience Letters, 413(1):72–76.

Noel, J.-P., Pfeiffer, C., Blanke, O., and Serino, A. (2015). Peripersonal space as the space

of the bodily self. Cognition, 144:49–57.

Ocklenburg, S., Peterburs, J., Ruther, N., and Gunturkun, O. (2012). The rubber hand

illusion modulates pseudoneglect. Neuroscience Letters, 523(2):158–161.

O’Doherty, J. E., Lebedev, M. A., Ifft, P. J., Zhuang, K. Z., Shokur, S., Bleuler, H., and

Nicolelis, M. A. L. (2011). Active tactile exploration using a brain-machine-brain interface.

Nature, 479(7372):228–231.

Paillard, J. and Brouchon, M. (1968). Active and passive movements in the calibration of

position sense. The neuropsychology of spatially oriented behavior, 11:37–55.

Parise, C. V., Spence, C., and Ernst, M. O. (2012). When correlation implies causation in

multisensory integration. Current biology: CB, 22(1):46–49.

Peters, M. A. K. (2014). Hierarchical Bayesian Causal Inference and Natural Statistics

Explain Heaviness Perception. University of California, Los Angeles.

Petkova, V. I. and Ehrsson, H. H. (2008). If I Were You: Perceptual Illusion of Body

Swapping. PLoS ONE, 3(12).

Press, C., Heyes, C., Haggard, P., and Eimer, M. (2008). Visuotactile learning and body

representation: An ERP study with rubber hands and rubber objects. Journal of cognitive

neuroscience, 20(2):312–323.

183



Ramachandran, V. S., Rogers-Ramachandran, D., and Cobb, S. (1995). Touching the phan-

tom limb. Nature, 377(6549):489–490.

Recanzone, G. H. (1998). Rapidly induced auditory plasticity: The ventriloquism afteref-

fect. Proceedings of the National Academy of Sciences of the United States of America,

95(3):869–875.

Renzi, C., Bruns, P., Heise, K.-F., Zimerman, M., Feldheim, J.-F., Hummel, F. C., and

Roder, B. (2013). Spatial Remapping in the Audio-tactile Ventriloquism Effect: A TMS

Investigation on the Role of the Ventral Intraparietal Area. Journal of Cognitive Neuro-

science, 25(5):790–801.

Reuschel, J., Drewing, K., Henriques, D. Y. P., Rosler, F., and Fiehler, K. (2010). Opti-

mal integration of visual and proprioceptive movement information for the perception of

trajectory geometry. Experimental Brain Research, 201(4):853–862.

Revonsuo, A. (1999). Binding and the Phenomenal Unity of Consciousness. Consciousness

and Cognition, 8(2):173–185.

Rincon-Gonzalez, L., Buneo, C. A., and Helms Tillery, S. I. (2011). The Proprioceptive Map

of the Arm Is Systematic and Stable, but Idiosyncratic. PLoS ONE, 6(11).

Rizzolatti, G., Fadiga, L., Fogassi, L., and Gallese, V. (1997). The Space Around Us. Science,

277(5323):190–191.

Rohde, M., Di Luca, M., and Ernst, M. O. (2011). The Rubber Hand Illusion: Feeling of

Ownership and Proprioceptive Drift Do Not Go Hand in Hand. PLoS ONE, 6(6).

184



Rohe, T. and Noppeney, U. (2015). Cortical Hierarchies Perform Bayesian Causal Inference

in Multisensory Perception. PLoS Biol, 13(2):e1002073.

Rosenthal, O., Shimojo, S., and Shams, L. (2009). Sound-Induced Flash Illusion is Resistant

to Feedback Training. Brain Topography, 21(3-4):185–192.

Ross, H. and Murray, D. (1978). EH Weber: The sense of touch. Academic Pr.

Samad, M., Chung, A. J., and Shams, L. (2015). Perception of Body Ownership Is Driven

by Bayesian Sensory Inference. PLoS ONE, 10(2):e0117178.

Samad, M. and Shams, L. (2016). Visual-Somatotopic Interactions in Spatial Perception.

Neuroreport, (27):180–185.

Sanchez-Vives, M. V., Spanlang, B., Frisoli, A., Bergamasco, M., and Slater, M. (2010).

Virtual Hand Illusion Induced by Visuomotor Correlations. PLoS ONE, 5(4).

Serwe, S., Drewing, K., and Trommershauser, J. (2009). Combination of noisy directional

visual and proprioceptive information. Journal of Vision, 9(5):28–28.

Seth, A. K., Suzuki, K., and Critchley, H. D. (2012). An Interoceptive Predictive Coding

Model of Conscious Presence. Frontiers in Psychology, 2.

Shams, L. and Beierholm, U. (2011). From Integration to Segregation: When and How the

Human Nervous System Combines Crossmodal Sensory Signals. In Sensory Cue Integra-

tion, Computational Neuroscience. Oxford University Press.

Shams, L. and Beierholm, U. R. (2010). Causal inference in perception. Trends in Cognitive

Sciences, 14(9):425–432.
185



Shams, L., Kamitani, Y., and Shimojo, S. (2000). What you see is what you hear. Nature,

408(6814):788.

Shams, L., Kamitani, Y., and Shimojo, S. (2002). Visual illusion induced by sound. Brain

Research. Cognitive Brain Research, 14(1):147–152.

Shams, L., Ma, W. J., and Beierholm, U. (2005). Sound-induced flash illusion as an optimal

percept. Neuroreport, 16(17):1923–1927.

Shimada, S., Fukuda, K., and Hiraki, K. (2009). Rubber Hand Illusion under Delayed Visual

Feedback. PLoS ONE, 4(7).

Sieben, K., Roder, B., and Hanganu-Opatz, I. L. (2013). Oscillatory Entrainment of Primary

Somatosensory Cortex Encodes Visual Control of Tactile Processing. The Journal of

Neuroscience, 33(13):5736–5749.

Smeets, J. B. J., Dobbelsteen, J. J. v. d., Grave, D. D. J. d., Beers, R. J. v., and Brenner,

E. (2006). Sensory integration does not lead to sensory calibration. Proceedings of the

National Academy of Sciences, 103(49):18781–18786.

Snijders, H. J., Holmes, N. P., and Spence, C. (2007). Direction-dependent integration of

vision and proprioception in reaching under the influence of the mirror illusion. Neuropsy-

chologia, 45(3):496–505.

Spence, C., Pavani, F., Maravita, A., and Holmes, N. (2004). Multisensory contributions

to the 3-D representation of visuotactile peripersonal space in humans: evidence from the

crossmodal congruency task. Journal of Physiology-Paris, 98(1-3):171–189.

186



Staub, E., Tursky, B., and Schwartz, G. E. (1971). Self-control and predictability: Their

effects on reactions to aversive stimulation. Journal of Personality and Social Psychology,

18(2):157–162.

Stein, B. E. and Stanford, T. R. (2008). Multisensory integration: current issues from the

perspective of the single neuron. Nature Reviews. Neuroscience, 9(4):255–266.

Suzuki, K., Garfinkel, S. N., Critchley, H. D., and Seth, A. K. (2013). Multisensory inte-

gration across exteroceptive and interoceptive domains modulates self-experience in the

rubber-hand illusion. Neuropsychologia, 51(13):2909–2917.

Tajima, D., Mizuno, T., Kume, Y., and Yoshida, T. (2015). The mirror illusion: does

proprioceptive drift go hand in hand with sense of agency? Frontiers in Psychology, 6.

Taylor-Clarke, M., Kennett, S., and Haggard, P. (2002). Vision Modulates Somatosensory

Cortical Processing. Current Biology, 12(3):233–236.

Tipper, S. P., Lloyd, D., Shorland, B., Dancer, C., Howard, L. A., and McGlone, F. (1998).

Vision influences tactile perception without proprioceptive orienting. Neuroreport: An In-

ternational Journal for the Rapid Communication of Research in Neuroscience, 9(8):1741–

1744.

Tsakiris, M. (2010). My body in the brain: a neurocognitive model of body-ownership.

Neuropsychologia, 48(3):703–712.

Tsakiris, M. and Haggard, P. (2005). The rubber hand illusion revisited: visuotactile inte-

gration and self-attribution. Journal of Experimental Psychology. Human Perception and

Performance, 31(1):80–91.
187



Tsakiris, M., Hesse, M. D., Boy, C., Haggard, P., and Fink, G. R. (2007). Neural signatures

of body ownership: a sensory network for bodily self-consciousness. Cerebral Cortex (New

York, N.Y.: 1991), 17(10):2235–2244.

Tsakiris, M., Jimenez, A. T., and Costantini, M. (2011). Just a heartbeat away from one’s

body: interoceptive sensitivity predicts malleability of body-representations. Proceedings

of the Royal Society B: Biological Sciences, 278(1717):2470–2476.

Tsakiris, M., Prabhu, G., and Haggard, P. (2006). Having a body versus moving your body:

How agency structures body-ownership. Consciousness and Cognition, 15(2):423–432.

van Beers, R. J., Sittig, A. C., and Denier van der Gon, J. J. (1998). The precision of

proprioceptive position sense. Experimental Brain Research, 122(4):367–377.

van Beers, R. J., Wolpert, D. M., and Haggard, P. (2002). When feeling is more important

than seeing in sensorimotor adaptation. Current biology: CB, 12(10):834–837.

van der Hoort, B., Guterstam, A., and Ehrsson, H. H. (2011). Being Barbie: The Size of

One’s Own Body Determines the Perceived Size of the World. PLoS ONE, 6(5).

Violentyev, A., Shimojo, S., and Shams, L. (2005). Touch-induced visual illusion. Neurore-

port, 16(10):1107–1110.

Vroomen, J., Keetels, M., de Gelder, B., and Bertelson, P. (2004). Recalibration of temporal

order perception by exposure to audio-visual asynchrony. Brain Research. Cognitive Brain

Research, 22(1):32–35.

Wallace, M. T., Roberson, G. E., Hairston, W. D., Stein, B. E., Vaughan, J. W., and

188



Schirillo, J. A. (2004). Unifying multisensory signals across time and space. Experimental

Brain Research, 158(2):252–258.

Walsh, L. D., Moseley, G. L., Taylor, J. L., and Gandevia, S. C. (2011). Proprioceptive

signals contribute to the sense of body ownership. The Journal of Physiology, 589(Pt

12):3009–3021.

Wann, J. P. and Ibrahim, S. F. (1992). Does limb proprioception drift? Experimental Brain

Research, 91(1):162–166.

Weiss, Y., Simoncelli, E. P., and Adelson, E. H. (2002). Motion illusions as optimal percepts.

Nature Neuroscience, 5(6):598–604.

Welch, R. B. and Warren, D. H. (1980). Immediate perceptual response to intersensory

discrepancy. Psychological Bulletin, 88(3):638–667.

Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review,

9(4):625–636.

Wozny, D. R., Beierholm, U. R., and Shams, L. (2008). Human trimodal perception follows

optimal statistical inference. Journal of Vision, 8(3):24–24.

Wozny, D. R., Beierholm, U. R., and Shams, L. (2010). Probability Matching as a Compu-

tational Strategy Used in Perception. PLoS Computational Biology, 6(8).

Wozny, D. R. and Shams, L. (2011a). Computational Characterization of Visually Induced

Auditory Spatial Adaptation. Frontiers in Integrative Neuroscience, 5.

189



Wozny, D. R. and Shams, L. (2011b). Recalibration of auditory space following milliseconds

of crossmodal discrepancy. The Journal of neuroscience : the official journal of the Society

for Neuroscience, 31(12):4607–4612.

190


